Class: Informers::PreTrainedModel
- Inherits:
-
Object
- Object
- Informers::PreTrainedModel
- Defined in:
- lib/informers/models.rb
Direct Known Subclasses
BartPretrainedModel, BertPreTrainedModel, CLIPPreTrainedModel, ClapPreTrainedModel, ConvBertPreTrainedModel, DPTPreTrainedModel, DebertaV2PreTrainedModel, DetrPreTrainedModel, DistilBertPreTrainedModel, DonutSwinPreTrainedModel, ElectraPreTrainedModel, GPT2PreTrainedModel, M2M100PreTrainedModel, MBartPreTrainedModel, MPNetPreTrainedModel, ModernBertPreTrainedModel, NomicBertPreTrainedModel, OwlViTPreTrainedModel, RobertaPreTrainedModel, SpeechT5PreTrainedModel, Swin2SRPreTrainedModel, T5PreTrainedModel, ViTPreTrainedModel, VisionEncoderDecoderModel, VitsPreTrainedModel, Wav2Vec2PreTrainedModel, WhisperPreTrainedModel, XLMRobertaPreTrainedModel
Constant Summary collapse
- MAIN_INPUT_NAME =
:input_ids
Instance Attribute Summary collapse
-
#config ⇒ Object
readonly
Returns the value of attribute config.
Class Method Summary collapse
- .construct_session(pretrained_model_name_or_path, file_name, **options) ⇒ Object
- .from_pretrained(pretrained_model_name_or_path, quantized: true, progress_callback: nil, config: nil, cache_dir: nil, local_files_only: false, revision: "main", device: nil, dtype: nil, model_file_name: nil, session_options: {}) ⇒ Object
Instance Method Summary collapse
- #call(model_inputs, **kwargs) ⇒ Object
- #generate(inputs, generation_config = nil, logits_processor = nil, inputs_attention_mask: nil) ⇒ Object
-
#initialize(config, session) ⇒ PreTrainedModel
constructor
A new instance of PreTrainedModel.
Constructor Details
#initialize(config, session) ⇒ PreTrainedModel
Returns a new instance of PreTrainedModel.
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/informers/models.rb', line 74 def initialize(config, session) super() @config = config @session = session @output_names = nil model_name = MODEL_CLASS_TO_NAME_MAPPING[self.class] model_type = MODEL_TYPE_MAPPING[model_name] case model_type when MODEL_TYPES[:DecoderOnly] @can_generate = true @run_beam = method(:decoder_run_beam) @get_start_beams = method(:decoder_start_beams) @update_beam = method(:decoder_update_beam) @forward = method(:decoder_forward) when MODEL_TYPES[:Seq2Seq], MODEL_TYPES[:Vision2Seq] @can_generate = true @run_beam = method(:seq2seq_run_beam) @get_start_beams = method(:seq2seq_start_beams) @update_beam = method(:seq2seq_update_beam) @forward = method(:seq2seq_forward) when MODEL_TYPES[:EncoderDecoder] @forward = method(:encoder_forward) else @forward = method(:encoder_forward) end end |
Instance Attribute Details
#config ⇒ Object (readonly)
Returns the value of attribute config.
72 73 74 |
# File 'lib/informers/models.rb', line 72 def config @config end |
Class Method Details
.construct_session(pretrained_model_name_or_path, file_name, **options) ⇒ Object
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# File 'lib/informers/models.rb', line 178 def self.construct_session(pretrained_model_name_or_path, file_name, **) prefix = "onnx/" if file_name.start_with?("../") prefix = "" file_name = file_name[3..] elsif file_name.start_with?("/") prefix = "" file_name = file_name[1..] end dtype = [:dtype] || ([:quantized] ? "q8" : "fp32") suffix = Utils::DEFAULT_DTYPE_SUFFIX_MAPPING[dtype.to_sym] if !suffix raise ArgumentError, "Invalid dtype: #{dtype}. Should be one of: #{Utils::DEFAULT_DTYPE_SUFFIX_MAPPING.keys.join(", ")}" end model_file_name = "#{prefix}#{file_name}#{suffix}.onnx" path = Utils::Hub.get_model_file(pretrained_model_name_or_path, model_file_name, true, **) = { providers: Backends::Onnx.device_to_execution_providers([:device]), log_severity_level: 4 }.merge([:session_options] || {}) begin OnnxRuntime::InferenceSession.new(path, **) rescue OnnxRuntime::Error => e raise e unless e..include?("No such file or directory") && e..include?(".onnx_data") Utils::Hub.get_model_file(pretrained_model_name_or_path, "#{model_file_name}_data", true, **) OnnxRuntime::InferenceSession.new(path, **) end end |
.from_pretrained(pretrained_model_name_or_path, quantized: true, progress_callback: nil, config: nil, cache_dir: nil, local_files_only: false, revision: "main", device: nil, dtype: nil, model_file_name: nil, session_options: {}) ⇒ Object
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# File 'lib/informers/models.rb', line 110 def self.from_pretrained( pretrained_model_name_or_path, quantized: true, progress_callback: nil, config: nil, cache_dir: nil, local_files_only: false, revision: "main", device: nil, dtype: nil, model_file_name: nil, session_options: {} ) = { quantized:, progress_callback:, config:, cache_dir:, local_files_only:, revision:, device:, dtype:, model_file_name:, session_options: } model_name = MODEL_CLASS_TO_NAME_MAPPING[self] model_type = MODEL_TYPE_MAPPING[model_name] config ||= AutoConfig.from_pretrained(pretrained_model_name_or_path, **) if model_type == MODEL_TYPES[:DecoderOnly] info = [ construct_session(pretrained_model_name_or_path, [:model_file_name] || "decoder_model_merged", **), Utils::Hub.get_model_json(pretrained_model_name_or_path, "generation_config.json", false, **) ] elsif model_type == MODEL_TYPES[:Seq2Seq] || model_type == MODEL_TYPES[:Vision2Seq] info = [ construct_session(pretrained_model_name_or_path, "encoder_model", **), construct_session(pretrained_model_name_or_path, "decoder_model_merged", **), Utils::Hub.get_model_json(pretrained_model_name_or_path, "generation_config.json", false, **) ] elsif model_type == MODEL_TYPES[:MaskGeneration] info = [ construct_session(pretrained_model_name_or_path, "vision_encoder", **), construct_session(pretrained_model_name_or_path, "prompt_encoder_mask_decoder", **) ] elsif model_type == MODEL_TYPES[:EncoderDecoder] info = [ construct_session(pretrained_model_name_or_path, "encoder_model", **), construct_session(pretrained_model_name_or_path, "decoder_model_merged", **) ] else if model_type != MODEL_TYPES[:EncoderOnly] warn "Model type for '#{model_name || config[:model_type]}' not found, assuming encoder-only architecture. Please report this." end info = [ construct_session(pretrained_model_name_or_path, [:model_file_name] || "model", **) ] end new(config, *info) end |
Instance Method Details
#call(model_inputs, **kwargs) ⇒ Object
210 211 212 |
# File 'lib/informers/models.rb', line 210 def call(model_inputs, **kwargs) @forward.(model_inputs, **kwargs) end |
#generate(inputs, generation_config = nil, logits_processor = nil, inputs_attention_mask: nil) ⇒ Object
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# File 'lib/informers/models.rb', line 214 def generate(inputs, generation_config = nil, logits_processor = nil, inputs_attention_mask: nil) if !@can_generate model_name = MODEL_CLASS_TO_NAME_MAPPING[self.class] = "The current model class (#{model_name}) is not compatible with `.generate()`, as it doesn't have a language model head." raise Error, end if !inputs.is_a?(Array) raise ArgumentError, "`inputs` must be an Array, but is #{inputs.class.name}" end if @config[:is_encoder_decoder] # Generating from the encoder outputs input_ids_seq_length = 0 else input_ids_seq_length = inputs.length # decoder-only if input_ids_seq_length == 0 raise Error, "Must supply a non-empty array of input token ids." end end # Update generation config with defaults generation_config = get_generation_config(generation_config) logits_processor ||= Utils::LogitsProcessorList.new # Update logits processor logits_processor = get_logits_processor( generation_config, input_ids_seq_length, logits_processor ) eos_token_ids = generation_config[:eos_token_id] if !eos_token_ids.nil? && !eos_token_ids.is_a?(Array) eos_token_ids = [eos_token_ids] end num_output_tokens = 1 max_output_tokens = num_output_tokens + (generation_config[:max_new_tokens] || Float::INFINITY) # Only use max length if max_new_tokens is not provided use_max_length = generation_config[:max_length].is_a?(Integer) && generation_config[:max_new_tokens].nil? sampler = Utils::Sampler.get_sampler(generation_config) beams = get_start_beams(inputs, generation_config, num_output_tokens, inputs_attention_mask) while beams.any? { |x| !x[:done] } && num_output_tokens < max_output_tokens newest_beams = [] beams.each do |beam| if beam[:done] # Add this beam back into the pool newest_beams << beam next end if use_max_length && beam[:output_token_ids].length >= generation_config["max_length"] # Set this beam to done and add it back into the pool beam[:done] = true newest_beams << beam next end output = run_beam(beam) # add attentions/scores to beam only if user requested if generation_config["output_attentions"] add_attentions_to_beam(beam, output) end # Logits are of the form [batch_size, out_seq_length, vocab_size] # In most cases, this will be [batch_size, 1, vocab_size] # So, we select the last token's logits: # (equivalent to `logits = outputs.logits[:, -1, :]`) logits = output["logits"].map { |v| v[-1] } # Apply logits processor logits_processor.(beam[:output_token_ids], logits) sampled_tokens = sampler.(logits) sampled_tokens.each do |new_token_id, log_prob| # use previous beam as a starting point new_beam = beam.dup # update new beam update_beam(new_beam, new_token_id) new_beam[:score] += log_prob if eos_token_ids && eos_token_ids.include?(new_token_id) new_beam[:done] = true end newest_beams << new_beam end end num_output_tokens += 1 # Next, we get the best beams, per ID newest_beams = group_beams(newest_beams).map do |group| group.sort_by { |v| -v[:score] }[0...generation_config["num_beams"]] end # Flatten beams beams = newest_beams.flatten(1) # Run callback if generation_config["callback_function"] generation_config["callback_function"].(beams) end end # TODO: Ensure that we can return non-batched outputs grouped_beams = group_beams(beams) get_flattened = lambda do |key| grouped_beams.flat_map do |batch| if generation_config["num_return_sequences"] > 1 raise Todo else [batch[0][key]] end end end sequences = get_flattened.(:output_token_ids) # [1, seqLength] if generation_config["return_dict_in_generate"] raise Todo else sequences end end |