Class: Informers::DetrFeatureExtractor
- Inherits:
-
ImageFeatureExtractor
- Object
- FeatureExtractor
- ImageFeatureExtractor
- Informers::DetrFeatureExtractor
- Defined in:
- lib/informers/processors.rb
Instance Method Summary collapse
- #call(images) ⇒ Object
- #check_segment_validity(mask_labels, mask_probs, k, mask_threshold = 0.5, overlap_mask_area_threshold = 0.8) ⇒ Object
- #compute_segments(mask_probs, pred_scores, pred_labels, mask_threshold, overlap_mask_area_threshold, label_ids_to_fuse = nil, target_size = nil) ⇒ Object
- #post_process_object_detection(*args) ⇒ Object
- #post_process_panoptic_segmentation(outputs, threshold: 0.5, mask_threshold: 0.5, overlap_mask_area_threshold: 0.8, label_ids_to_fuse: nil, target_sizes: nil) ⇒ Object
- #remove_low_and_no_objects(class_logits, mask_logits, object_mask_threshold, num_labels) ⇒ Object
Methods inherited from ImageFeatureExtractor
#get_resize_output_image_size, #initialize, #pad_image, #preprocess, #rescale, #resize, #thumbnail
Methods inherited from FeatureExtractor
Constructor Details
This class inherits a constructor from Informers::ImageFeatureExtractor
Instance Method Details
#call(images) ⇒ Object
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'lib/informers/processors.rb', line 421 def call(images) result = super(images) # TODO support differently-sized images, for now assume all images are the same size. # TODO support different mask sizes (not just 64x64) # Currently, just fill pixel mask with 1s mask_size = [result[:pixel_values].size, 64, 64] pixel_mask = mask_size[0].times.map do mask_size[1].times.map do mask_size[2].times.map do 1 end end end result.merge(pixel_mask: pixel_mask) end |
#check_segment_validity(mask_labels, mask_probs, k, mask_threshold = 0.5, overlap_mask_area_threshold = 0.8) ⇒ Object
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# File 'lib/informers/processors.rb', line 471 def check_segment_validity( mask_labels, mask_probs, k, mask_threshold = 0.5, overlap_mask_area_threshold = 0.8 ) # mask_k is a 1D array of indices, indicating where the mask is equal to k mask_k = [] mask_k_area = 0 original_area = 0 mask_probs_k_data = mask_probs[k].flatten # Compute the area of all the stuff in query k mask_labels.length.times do |i| if mask_labels[i] == k mask_k << i mask_k_area += 1 end if mask_probs_k_data[i] >= mask_threshold original_area += 1 end end mask_exists = mask_k_area > 0 && original_area > 0 # Eliminate disconnected tiny segments if mask_exists # Perform additional check area_ratio = mask_k_area / original_area mask_exists = area_ratio > overlap_mask_area_threshold end [mask_exists, mask_k] end |
#compute_segments(mask_probs, pred_scores, pred_labels, mask_threshold, overlap_mask_area_threshold, label_ids_to_fuse = nil, target_size = nil) ⇒ Object
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# File 'lib/informers/processors.rb', line 508 def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold, overlap_mask_area_threshold, label_ids_to_fuse = nil, target_size = nil ) height, width = target_size || Utils.dims(mask_probs[0]) segmentation = Array.new(height * width) segments = [] # 1. If target_size is not null, we need to resize the masks to the target size if !target_size.nil? # resize the masks to the target size mask_probs.length.times do |i| mask_probs[i] = Utils.interpolate(mask_probs[i], target_size, "bilinear", false) end end # 2. Weigh each mask by its prediction score # NOTE: `mask_probs` is updated in-place # # Temporary storage for the best label/scores for each pixel ([height, width]): mask_labels = Array.new(mask_probs[0].flatten.length) best_scores = Array.new(mask_probs[0].flatten.length, 0) mask_probs.length.times do |i| score = pred_scores[i] mask_probs_i_data = mask_probs[i].flatten mask_probs_i_dims = Utils.dims(mask_probs[i]) mask_probs_i_data.length.times do |j| mask_probs_i_data[j] *= score if mask_probs_i_data[j] > best_scores[j] mask_labels[j] = i best_scores[j] = mask_probs_i_data[j] end end mask_probs[i] = Utils.reshape(mask_probs_i_data, mask_probs_i_dims) end current_segment_id = 0 # stuff_memory_list = {} pred_labels.length.times do |k| pred_class = pred_labels[k] # TODO add `should_fuse` # should_fuse = label_ids_to_fuse.include?(pred_class) # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if !mask_exists # Nothing to see here next end current_segment_id += 1 # Add current object segment to final segmentation map mask_k.each do |index| segmentation[index] = current_segment_id end segments << { id: current_segment_id, label_id: pred_class, score: pred_scores[k] } end segmentation = Utils.reshape(segmentation, [height, width]) [segmentation, segments] end |
#post_process_object_detection(*args) ⇒ Object
440 441 442 |
# File 'lib/informers/processors.rb', line 440 def post_process_object_detection(*args) Utils.post_process_object_detection(*args) end |
#post_process_panoptic_segmentation(outputs, threshold: 0.5, mask_threshold: 0.5, overlap_mask_area_threshold: 0.8, label_ids_to_fuse: nil, target_sizes: nil) ⇒ Object
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# File 'lib/informers/processors.rb', line 596 def post_process_panoptic_segmentation( outputs, threshold: 0.5, mask_threshold: 0.5, overlap_mask_area_threshold: 0.8, label_ids_to_fuse: nil, target_sizes: nil ) if label_ids_to_fuse.nil? warn "`label_ids_to_fuse` unset. No instance will be fused." label_ids_to_fuse = Set.new end class_queries_logits = outputs[:logits] # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs[:pred_masks] # [batch_size, num_queries, height, width] mask_probs = Utils.sigmoid(masks_queries_logits) # [batch_size, num_queries, height, width] batch_size, _num_queries, num_labels = class_queries_logits.size, class_queries_logits[0].size, class_queries_logits[0][0].size num_labels -= 1 # Remove last class (background) if !target_sizes.nil? && target_sizes.length != batch_size raise Error, "Make sure that you pass in as many target sizes as the batch dimension of the logits" end to_return = [] batch_size.times do |i| target_size = !target_sizes.nil? ? target_sizes[i] : nil class_logits = class_queries_logits[i] mask_logits = mask_probs[i] mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(class_logits, mask_logits, threshold, num_labels) if pred_labels_item.length == 0 raise Todo end # Get segmentation map and segment information of batch item segmentation, segments = compute_segments( mask_probs_item, pred_scores_item, pred_labels_item, mask_threshold, overlap_mask_area_threshold, label_ids_to_fuse, target_size ) to_return << { segmentation: segmentation, segments_info: segments } end to_return end |
#remove_low_and_no_objects(class_logits, mask_logits, object_mask_threshold, num_labels) ⇒ Object
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# File 'lib/informers/processors.rb', line 444 def remove_low_and_no_objects(class_logits, mask_logits, object_mask_threshold, num_labels) mask_probs_item = [] pred_scores_item = [] pred_labels_item = [] class_logits.size.times do |j| cls = class_logits[j] mask = mask_logits[j] pred_label = Utils.max(cls)[1] if pred_label == num_labels # Is the background, so we ignore it next end scores = Utils.softmax(cls) pred_score = scores[pred_label] if pred_score > object_mask_threshold mask_probs_item << mask pred_scores_item << pred_score pred_labels_item << pred_label end end [mask_probs_item, pred_scores_item, pred_labels_item] end |