Module: Informers
- Defined in:
- lib/informers.rb,
lib/informers/env.rb,
lib/informers/model.rb,
lib/informers/models.rb,
lib/informers/configs.rb,
lib/informers/version.rb,
lib/informers/pipelines.rb,
lib/informers/utils/hub.rb,
lib/informers/tokenizers.rb,
lib/informers/utils/core.rb,
lib/informers/utils/math.rb,
lib/informers/utils/tensor.rb
Defined Under Namespace
Modules: Utils Classes: AutoConfig, AutoModel, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, BertForSequenceClassification, BertForTokenClassification, BertModel, BertPreTrainedModel, BertTokenizer, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertModel, DistilBertPreTrainedModel, DistilBertTokenizer, Error, FeatureExtractionPipeline, Model, ModelOutput, Pipeline, PreTrainedModel, PreTrainedTokenizer, PretrainedConfig, PretrainedMixin, QuestionAnsweringModelOutput, QuestionAnsweringPipeline, SequenceClassifierOutput, TextClassificationPipeline, Todo, TokenClassificationPipeline, TokenClassifierOutput
Constant Summary collapse
- CACHE_HOME =
ENV.fetch("XDG_CACHE_HOME", File.join(ENV.fetch("HOME"), ".cache"))
- DEFAULT_CACHE_DIR =
File.(File.join(CACHE_HOME, "informers"))
- MODEL_TYPES =
{ EncoderOnly: 0, EncoderDecoder: 1, Seq2Seq: 2, Vision2Seq: 3, DecoderOnly: 4, MaskGeneration: 5 }
- MODEL_TYPE_MAPPING =
NOTE: These will be populated fully later
{}
- MODEL_NAME_TO_CLASS_MAPPING =
{}
- MODEL_CLASS_TO_NAME_MAPPING =
{}
- MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES =
{ "bert" => ["BertForSequenceClassification", BertForSequenceClassification], "distilbert" => ["DistilBertForSequenceClassification", DistilBertForSequenceClassification] }
- MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES =
{ "bert" => ["BertForTokenClassification", BertForTokenClassification] }
- MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES =
{ "distilbert" => ["DistilBertForQuestionAnswering", DistilBertForQuestionAnswering] }
- MODEL_CLASS_TYPE_MAPPING =
[ [MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]], [MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]], [MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]] ]
- VERSION =
"1.0.1"- SUPPORTED_TASKS =
{ "text-classification" => { tokenizer: AutoTokenizer, pipeline: TextClassificationPipeline, model: AutoModelForSequenceClassification, default: { model: "Xenova/distilbert-base-uncased-finetuned-sst-2-english" }, type: "text" }, "token-classification" => { tokenizer: AutoTokenizer, pipeline: TokenClassificationPipeline, model: AutoModelForTokenClassification, default: { model: "Xenova/bert-base-multilingual-cased-ner-hrl" }, type: "text" }, "question-answering" => { tokenizer: AutoTokenizer, pipeline: QuestionAnsweringPipeline, model: AutoModelForQuestionAnswering, default: { model: "Xenova/distilbert-base-cased-distilled-squad" }, type: "text" }, "feature-extraction" => { tokenizer: AutoTokenizer, pipeline: FeatureExtractionPipeline, model: AutoModel, default: { model: "Xenova/all-MiniLM-L6-v2" }, type: "text" } }
- TASK_ALIASES =
{ "sentiment-analysis" => "text-classification", "ner" => "token-classification" }
- DEFAULT_PROGRESS_CALLBACK =
lambda do |msg| stream = $stderr tty = stream.tty? width = tty ? stream.winsize[1] : 80 if msg[:status] == "progress" && tty stream.print "\r#{Utils::Hub.display_progress(msg[:file], width, msg[:size], msg[:total_size])}" elsif msg[:status] == "done" && !msg[:cache_hit] if tty stream.puts else stream.puts Utils::Hub.display_progress(msg[:file], width, 1, 1) end end end
Class Attribute Summary collapse
-
.allow_remote_models ⇒ Object
Returns the value of attribute allow_remote_models.
-
.cache_dir ⇒ Object
Returns the value of attribute cache_dir.
-
.remote_host ⇒ Object
Returns the value of attribute remote_host.
-
.remote_path_template ⇒ Object
Returns the value of attribute remote_path_template.
Class Method Summary collapse
Class Attribute Details
.allow_remote_models ⇒ Object
Returns the value of attribute allow_remote_models.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def allow_remote_models @allow_remote_models end |
.cache_dir ⇒ Object
Returns the value of attribute cache_dir.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def cache_dir @cache_dir end |
.remote_host ⇒ Object
Returns the value of attribute remote_host.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def remote_host @remote_host end |
.remote_path_template ⇒ Object
Returns the value of attribute remote_path_template.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def remote_path_template @remote_path_template end |
Class Method Details
.pipeline(task, model = nil, quantized: true, progress_callback: DEFAULT_PROGRESS_CALLBACK, config: nil, cache_dir: nil, local_files_only: false, revision: "main", model_file_name: nil) ⇒ Object
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
# File 'lib/informers/pipelines.rb', line 365 def pipeline( task, model = nil, quantized: true, progress_callback: DEFAULT_PROGRESS_CALLBACK, config: nil, cache_dir: nil, local_files_only: false, revision: "main", model_file_name: nil ) # Apply aliases task = TASK_ALIASES[task] || task # Get pipeline info pipeline_info = SUPPORTED_TASKS[task.split("_", 1)[0]] if !pipeline_info raise Error, "Unsupported pipeline: #{task}. Must be one of #{SUPPORTED_TASKS.keys}" end # Use model if specified, otherwise, use default if !model model = pipeline_info[:default][:model] warn "No model specified. Using default model: #{model.inspect}." end = { quantized:, progress_callback:, config:, cache_dir:, local_files_only:, revision:, model_file_name: } classes = { tokenizer: pipeline_info[:tokenizer], model: pipeline_info[:model], processor: pipeline_info[:processor] } # Load model, tokenizer, and processor (if they exist) results = load_items(classes, model, ) results[:task] = task Utils.dispatch_callback(progress_callback, { status: "ready", task: task, model: model }) pipeline_class = pipeline_info.fetch(:pipeline) pipeline_class.new(**results) end |