Module: Histogram
- Defined in:
- lib/histogram/plot.rb,
lib/histogram/version.rb,
lib/histogram.rb
Defined Under Namespace
Modules: Plot
Constant Summary collapse
- VERSION =
"0.2.2.0"- DEFAULT_BIN_METHOD =
:scott- DEFAULT_QUARTILE_METHOD =
:moore_mccabe
Class Method Summary collapse
-
.iqrange(obj, opts = {}) ⇒ Object
opts: .
-
.median(sorted) ⇒ Object
finds median on a pre-sorted array.
-
.minmax(obj) ⇒ Object
returns (min, max).
-
.sample_stats(obj) ⇒ Object
returns (mean, standard_dev) if size == 0 returns [nil, nil].
Instance Method Summary collapse
-
#avg_ints(one, two) ⇒ Object
:nodoc:.
-
#histogram(*args) ⇒ Object
Returns [bins, freqs].
-
#number_of_bins(methd = DEFAULT_BIN_METHOD, quartile_method = DEFAULT_QUARTILE_METHOD) ⇒ Object
returns(integer) takes :scott|:sturges|:fd|:middle.
Class Method Details
.iqrange(obj, opts = {}) ⇒ Object
opts:
defaults:
:method => :moore_mccabe, :tukey
:sorted => false
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/histogram.rb', line 52 def iqrange(obj, opts={}) opt = {:method => DEFAULT_QUARTILE_METHOD, :sorted => false}.merge( opts ) srted = opt[:sorted] ? obj : obj.sort sz = srted.size return 0 if sz == 1 answer = case opt[:method] when :tukey hi_idx = sz / 2 lo_idx = (sz % 2 == 0) ? hi_idx-1 : hi_idx median(srted[hi_idx..-1]) - median(srted[0..lo_idx]) when :moore_mccabe hi_idx = sz / 2 lo_idx = hi_idx - 1 hi_idx += 1 unless sz.even? median(srted[hi_idx..-1]) - median(srted[0..lo_idx]) else raise ArgumentError, "method must be :tukey" end answer.to_f end |
.median(sorted) ⇒ Object
finds median on a pre-sorted array
75 76 77 78 |
# File 'lib/histogram.rb', line 75 def median(sorted) return sorted[0] if sorted.size == 1 (sorted[(sorted.size - 1) / 2] + sorted[sorted.size / 2]) / 2.0 end |
.minmax(obj) ⇒ Object
returns (min, max)
17 18 19 20 21 22 23 24 25 26 27 28 29 |
# File 'lib/histogram.rb', line 17 def minmax(obj) if obj.is_a?(Array) obj.minmax else mn = obj[0] mx = obj[0] obj.each do |val| if val < mn then mn = val end if val > mx then mx = val end end [mn, mx] end end |
.sample_stats(obj) ⇒ Object
returns (mean, standard_dev) if size == 0 returns [nil, nil]
33 34 35 36 37 38 39 40 41 42 43 44 |
# File 'lib/histogram.rb', line 33 def sample_stats(obj) _len = obj.size return [nil, nil] if _len == 0 _sum = 0.0 ; _sum_sq = 0.0 obj.each do |val| _sum += val _sum_sq += val * val end std_dev = _sum_sq - ((_sum * _sum)/_len) std_dev /= ( _len > 1 ? _len-1 : 1 ) [_sum.to_f/_len, Math.sqrt(std_dev)] end |
Instance Method Details
#avg_ints(one, two) ⇒ Object
:nodoc:
350 351 352 |
# File 'lib/histogram.rb', line 350 def avg_ints(one, two) # :nodoc: (one.to_f + two.to_f) / 2.0 end |
#histogram(*args) ⇒ Object
Returns [bins, freqs]
histogram(bins, opts) histogram(opts)
Options:
:bins => :scott Scott's method range/(3.5σ * n^(-1/3))
:fd Freedman-Diaconis range/(2*iqrange *n^(-1/3)) (default)
:sturges Sturges' method log_2(n) + 1 (overly smooth for n > 200)
:middle the median between :fd, :scott, and :sturges
<Integer> give the number of bins
<Array> specify the bins themselves
:bin_boundary => :avg boundary is the avg between bins (default)
:min bins specify the minima for binning
:bin_width => <float> width of a bin (overrides :bins)
:min => <float> # explicitly set the min
:max => <float> # explicitly set the max val
:other_sets => an array of other sets to histogram
Examples
require 'histogram/array'
ar = [-2,1,2,3,3,3,4,5,6,6]
# these return: [bins, freqencies]
ar.histogram(20) # use 20 bins
ar.histogram([-3,-1,4,5,6], :bin_boundary => :avg) # custom bins
# returns [bins, freq1, freq2 ...]
(bins, *freqs) = ar.histogram(30, :bin_boundary => :avg, :other_sets => [3,3,4,4,5], [-1,0,0,3,3,6])
(ar_freqs, other1, other2) = freqs
# histogramming with weights
w_weights.histogram(20, :weights => [3,3,8,8,9,9,3,3,3,3])
# with NArray
require 'histogram/narray'
NArray.float(20).random!(3).histogram(20)
# => [bins, freqs] # are both NArray.float objects
Notes
-
The lowest bin will be min, highest bin the max unless array given.
-
Assumes that bins are increasing.
-
:avg means that the boundary between the specified bins is at the avg between the bins (rounds up )
-
:min means that to fit in the bin it must be >= the bin and < the next (so, values lower than first bin are not included, but all values higher, than last bin are included. Current implementation of custom bins is slow.
-
if other_sets are supplied, the same bins will be used for all the sets. It is useful if you just want a certain number of bins and for the sets to share the exact same bins. In this case returns [bins, freqs(caller), freqs1, freqs2 …]
-
Can also deal with weights. :weights should provide parallel arrays to the caller and any :other_sets provided.
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# File 'lib/histogram.rb', line 169 def histogram(*args) make_freqs_proc = lambda do |obj, len| if obj.is_a?(Array) Array.new(len, 0.0) elsif obj.is_a?(NArray) NArray.float(len) end end case args.size when 2 (bins, opts) = args when 1 arg = args.shift if arg.is_a?(Hash) opts = arg else bins = arg opts = {} end when 0 opts = {} bins = nil else raise ArgumentError, "accepts no more than 2 args" end opts = ({ :bin_boundary => :avg, :other_sets => [] }).merge(opts) bins = opts[:bins] if opts[:bins] bins = DEFAULT_BIN_METHOD unless bins bin_boundary = opts[:bin_boundary] other_sets = opts[:other_sets] bins_array_like = bins.kind_of?(Array) || bins.kind_of?(NArray) || opts[:bin_width] all = [self] + other_sets if bins.is_a?(Symbol) bins = number_of_bins(bins) end weights = if opts[:weights] have_frac_freqs = true opts[:weights][0].is_a?(Numeric) ? [ opts[:weights] ] : opts[:weights] else [] end # we need to know the limits of the bins if we need to define our own bins if opts[:bin_width] || !bins_array_like calc_min, calc_max = unless opts[:min] && opts[:max] (mins, maxs) = all.map {|ar| Histogram.minmax(ar) }.transpose [mins.min, maxs.max] end end _min = opts[:min] || calc_min _max = opts[:max] || calc_max if opts[:bin_width] bins = [] _min.step(_max, opts[:bin_width]) {|v| bins << v } end _bins = nil _freqs = nil if bins_array_like ######################################################## # ARRAY BINS: ######################################################## _bins = if bins.is_a?(Array) bins.map {|v| v.to_f } elsif bins.is_a?(NArray) bins.to_f end case bin_boundary when :avg freqs_ar = all.zip(weights).map do |xvals, yvals| _freqs = make_freqs_proc.call(xvals, bins.size) break_points = [] (0...(bins.size)).each do |i| bin = bins[i] break if i == (bins.size - 1) break_points << avg_ints(bin,bins[i+1]) end (0...(xvals.size)).each do |i| val = xvals[i] height = have_frac_freqs ? yvals[i] : 1 if val < break_points.first _freqs[0] += height elsif val >= break_points.last _freqs[-1] += height else (0...(break_points.size-1)).each do |i| if val >= break_points[i] && val < break_points[i+1] _freqs[i+1] += height break end end end end _freqs end when :min freqs_ar = all.zip(weights).map do |xvals, yvals| #_freqs = VecI.new(bins.size, 0) _freqs = make_freqs_proc.call(xvals, bins.size) (0...(xvals.size)).each do |i| val = xvals[i] height = have_frac_freqs ? yvals[i] : 1 last_i = 0 last_found_j = false (0...(_bins.size)).each do |j| if val >= _bins[j] last_found_j = j elsif last_found_j break end end if last_found_j ; _freqs[last_found_j] += height ; end end _freqs end end else ######################################################## # NUMBER OF BINS: ######################################################## # Create the scaling factor dmin = _min.to_f conv = _max == _min ? 0 : bins.to_f/(_max - _min) _bins = if self.is_a?(Array) Array.new(bins) elsif self.is_a?(NArray) NArray.float(bins) end freqs_ar = all.zip(weights).map do |xvals, yvals| # initialize arrays _freqs = make_freqs_proc.call(xvals, bins) _len = size # Create the histogram: (0...(xvals.size)).each do |i| val = xvals[i] height = have_frac_freqs ? yvals[i] : 1 index = ((val-_min)*conv).floor if index == bins index -= 1 end _freqs[index] += height end _freqs end # Create the bins: iconv = 1.0/conv case bin_boundary when :avg (0...bins).each do |i| _bins[i] = ((i+0.5) * iconv) + dmin end when :min (0...bins).each do |i| _bins[i] = (i * iconv) + dmin end end end [_bins] + freqs_ar end |
#number_of_bins(methd = DEFAULT_BIN_METHOD, quartile_method = DEFAULT_QUARTILE_METHOD) ⇒ Object
returns(integer) takes :scott|:sturges|:fd|:middle
middle is the median between the other three values
inspired by Richard Cotton’s matlab implementation and the histogram page on wikipedia
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/histogram.rb', line 89 def number_of_bins(methd=DEFAULT_BIN_METHOD, quartile_method=DEFAULT_QUARTILE_METHOD) if methd == :middle [:scott, :sturges, :fd].map {|v| number_of_bins(v) }.sort[1] else nbins = case methd when :scott range = (self.max - self.min).to_f (mean, stddev) = Histogram.sample_stats(self) range / ( 3.5*stddev*(self.size**(-1.0/3)) ) when :sturges 1 + Math::log2(self.size) when :fd 2 * Histogram.iqrange(self, :method => quartile_method) * (self.size**(-1.0/3)) end nbins = 1 if nbins.nan? nbins = 1 if nbins <= 0 nbins.ceil.to_i end end |