Module: CodeRunner::Gs2::GSLTensors

Included in:
CodeRunner::Gs2
Defined in:
lib/gs2crmod/gsl_data_3d.rb

Constant Summary collapse

FIELD_VALUES =

end

[:phi, :density, :apar, :bpar]
TRIVIAL_INDICES =
[:graphkit_name]
TIME_VARYING_INDICES =
[:t_index, :begin_element, :end_element, :frame_index, :t_index_window]
IRRELEVANT_INDICES =
FIELD_VALUES + TRIVIAL_INDICES + TIME_VARYING_INDICES

Instance Method Summary collapse

Instance Method Details

#apar_gsl_tensor(options) ⇒ Object



369
370
371
# File 'lib/gs2crmod/gsl_data_3d.rb', line 369

def apar_gsl_tensor(options)
  return GSL::Tensor.new(netcdf_file.var('apar').get)
end

#bpar_gsl_tensor(options) ⇒ Object



372
373
374
# File 'lib/gs2crmod/gsl_data_3d.rb', line 372

def bpar_gsl_tensor(options)
  return GSL::Tensor.new(netcdf_file.var('bpar').get)
end

#cartesian_coordinates_gsl_tensor(options) ⇒ Object



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# File 'lib/gs2crmod/gsl_data_3d.rb', line 736

def cartesian_coordinates_gsl_tensor(options)
  cyl = cylindrical_coordinates_gsl_tensor(options)
  shape = cyl.shape
  cart = GSL::Tensor.alloc(*shape)
  for i in 0...shape[1]
    for j in 0...shape[2]
      for k in 0...shape[3]
        r = cyl[0,i,j,k]
        z = cyl[1,i,j,k]
        phi = cyl[2,i,j,k]
        #cart[0,i,j,k] = r # Y
        cart[0,i,j,k] = r*Math.cos(phi) # X
        #cart[1,i,j,k] = phi # X
        cart[1,i,j,k] = r*Math.sin(phi) # Y
        cart[2,i,j,k] = z
      end
    end
  end
  cart
end

#constant_torphi_surface_gsl_tensor(options) ⇒ Object

Returns a rank 2 tensor, which gives, as a function of the x index j and the theta index k, the y index nearest to a poloidal plane at angle options is the torus was filled with periodic copies of the flux surface. Used for making cross sections at a constant toroidal angle.



435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# File 'lib/gs2crmod/gsl_data_3d.rb', line 435

def constant_torphi_surface_gsl_tensor(options)
  ops = options.dup
  IRRELEVANT_INDICES.each{|v| ops.delete(v)}
  return  cache[[:constant_torphi_surface_gsl_tensor, ops]] if cache[[:constant_torphi_surface_gsl_tensor, ops]]
  correct_3d_options(options)
  torphiout = options[:torphi]
  cyls = cylindrical_coordinates_gsl_tensor(options.absorb({extra_points: :y}))
  shpc = cyls.shape
  factors = geometric_factors_gsl_tensor(options)
  #ep shpc, 'shpc'
  #xsize = case shpc[2]

  yvec = gsl_vector('y', options)
  #ep yvec.to_a ; gets
  x = gsl_vector('x', options)
  dy = yvec[1] - yvec[0]
  torphi_const = GSL::Tensor.int(shpc[2], shpc[3]) # don't include extra x point
  xfac = 1.0 / options[:rho_star_actual]
  yfac = options[:rhoc_actual] / options[:q_actual] / options[:rho_star_actual]  
        #coordinates[2,i,j,k] = y[i] / yfac - factors[2,k] - x[j]/xfac*factors[5,k] # phi
  twopi = Math::PI*2
  for j in 0...shpc[2]
    for k in 0...shpc[3]
      y = yfac * (torphiout + factors[2,k] + x[j]/xfac*factors[5,k])
      if options[:no_copies]
        i = (y/dy).floor 
      else
        i = (y/dy).floor % yvec.size
      end
      torphi_const[j,k] = i
    end
  end
  return torphi_const

  #ep torphi_const; gets
end

#correct_3d_options(options) ⇒ Object

Adjust n0, rho_star_actual and q_actual to ensure periodicity



566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# File 'lib/gs2crmod/gsl_data_3d.rb', line 566

def correct_3d_options(options)
  raise "Please specify options[:rho_star] or options[:n0]" unless options[:rho_star] or options[:n0]
  case @equilibrium_option
  when "s-alpha"
    qinp = epsl / (pk||2*kp)
    #xfac = @epsl**4/options[:rho_star]/4/pka**2/@eps**2
    #xfac_geo = 1
    #yfac = 1/options[:rho_star]/@epsl*2*pka*@eps
    #yfac_geo = 2*pka*@eps/@epsl**2
    #yfac_geo = 2*pka*@eps/@epsl**2
    options[:rhoc_actual] =rhoc =  2 * eps / epsl
  else
    options[:rhoc_actual] = rhoc = @rhoc
    qinp = @qinp
  end
  #eputs "Checking that rho_star and q satisfy periodicity..."
  rho_star_inp = options[:rho_star]
  y = gsl_vector('y', options)
  ly = (y[1]-y[0]) * (y.size) 
  n0_fac = 2.0*Math::PI * rhoc / ly
  n0_inp = options[:n0] || n0_fac / qinp / rho_star_inp 
  if n0_inp%1.0==0.0
    n0 = n0_inp
  else
    #eputs "Input n0 is equal to #{n0_inp}..."
    n0 = n0_inp.ceil
    #eputs "Set n0 to #{n0}..."
  end
  
  if (qinp*n0)%1.0==0.0
    q_actual = qinp
  else
    q_actual = (qinp*n0).round.to_f/n0
    #eputs "Set q to #{q_actual}..."
  end
  options[:q_actual] = q_actual
  unless options[:rho_star_actual] and options[:rho_star_actual] == n0_fac/n0/q_actual
    #eputs "Adjusting rho_star to satisfy periodicity ..."
    options[:rho_star_actual] = n0_fac/n0/q_actual
    #eputs "Set rhostar to #{options[:rho_star_actual]}..."
    #eputs "Note... to avoid adjustment of q specify n0 as an input rather than rho_star. Make sure that n0 is an integer and n0 * q is an integer."
  end
end

#cylindrical_coordinates_gsl_tensor(options) ⇒ Object

Return a rank 4 tensor which give cylindrical coordinates R,Z,torphi as a function of gs2 coordinates y, x, theta.

a = cylindrical_coordinates_gsl_tensor(options)

# pseudocode R(y, x, theta) = a Z(y, x, theta) = a torphi(y, x, theta) = a



621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# File 'lib/gs2crmod/gsl_data_3d.rb', line 621

def cylindrical_coordinates_gsl_tensor(options)
  ops = options.dup
  (IRRELEVANT_INDICES + [:torphi, :torphi_values]).each{|v| ops.delete(v)}
  return  cache[[:cylindrical_coordinates_gsl_tensor, ops]] if cache[[:cylindrical_coordinates_gsl_tensor, ops]]
  #ep ops; gets
  #options = options.dup
  x = gsl_vector('x', options)
  y = gsl_vector('y', options)
  ly = 2*Math::PI*y0#(y[1]-y[0]) * (y.size) 
  if [true,:x].include? options[:extra_points]
    ep "Extending x..."
    x = x.connect([2*x[-1] - x[-2]].to_gslv).dup
  end
  if [true,:y].include? options[:extra_points]
    ep "Extending y..."
    y = y.connect([2.0*y[-1] - y[-2]].to_gslv).dup
    raise "ly corrected incorrectly #{ly},#{y[-1]},#{y[0]},#{y[-1]-y[0]}" unless (ly-(y[-1] - y[0])).abs / ly.abs < 1.0e-6
  end


  #if options[:xmax] 
   #if options[:xmin]
     #x = x.subvector(options[:xmin], options[:xmax] - options[:xmin])
   #else
     #x = x[options[:xmax]].to_gslv
   #end
  #elsif options[:xmin]
   #x = x[options[:xmin]].to_gslv
  #end
  #if options[:ymax] 
   #if options[:ymin]
     #y = y.subvector(options[:ymin], options[:ymax] - options[:ymin])
   #else
     #y = y[options[:ymax]].to_gslv
   #end
  #elsif options[:ymin]
   #y = y[options[:ymin]].to_gslv
  #end



  #ep [options, options[:xmin]||0, (options[:xmax]||x.size-1) - (options[:xmin]||0) + 1]
  x = x.subvector(options[:xmin]||0, (options[:xmax]||x.size-1) - (options[:xmin]||0) + 1).dup # if options[:xout] and options[:xin]
  y = y.subvector(options[:ymin]||0, (options[:ymax]||y.size-1) - (options[:ymin]||0) + 1).dup # if options[:yout] and options[:yin]
  ###y = y.subvector(options[:ymin], options[:ymax] - options[:ymin] + 1)# if yi = options[:yout] and options[:yin]
  #  
  ###ep 'ncopy', options[:ncopy]
  #y = y + options[:ncopy] * (y[-1]-y[0]) if options[:ncopy]
  y = y + options[:ncopy] * ly if options[:ncopy]
  #ep 'y', y
    #ep y; gets
  #ep options; gets
  theta = gsl_vector('theta', options)
  #ep theta; gets;
  #ep 'thsize', @ntheta, theta.size
  correct_3d_options(options)
  rhoc = options[:rhoc_actual]
  q_actual = options[:q_actual]
  xfac = 1.0 / options[:rho_star_actual]
  yfac = rhoc / q_actual / options[:rho_star_actual]
  factors = geometric_factors_gsl_tensor(options)
  
  #ep ['factors.shape', factors.shape]




  coordinates = GSL::Tensor.alloc(3, y.size, x.size, theta.size)
  for i in 0...y.size
    for j in 0...x.size
      for k in 0...theta.size
        coordinates[0,i,j,k] = factors[0,k] + x[j]/xfac*factors[3,k] # R
        coordinates[1,i,j,k] = factors[1,k] + x[j]/xfac*factors[4,k] # Z
        coordinates[2,i,j,k] = y[i] / yfac - factors[2,k] - x[j]/xfac*factors[5,k] # phi
        #ep [i,j,k], coordinates[0, false, j,k].to_a
        if gs2f = options[:gs2_coordinate_factor]
          rgs2 = (x[j]**2 + y[i]**2 )**0.5*(1.0 + 2.0 * Float::EPSILON)
          #p ['x', x[j], 'y', y[i], 'r', rgs2] if agk?
          if rgs2 < 1.0e-8
            phigs2 = 0
          else
            phigs2 = Math.acos(x[j]/rgs2)
          end
          coordinates[0,i,j,k] = rgs2 * gs2f + coordinates[0,i,j,k] * (1.0-gs2f)
          coordinates[1,i,j,k] = theta[k] * gs2f + coordinates[1,i,j,k] * (1.0-gs2f)
          coordinates[2,i,j,k] = phigs2 * gs2f + coordinates[2,i,j,k] * (1.0-gs2f)
        end


          
      end
    end
  end
  #exit
  case tp = options[:toroidal_projection]
  when Numeric
    coordinates[2, false] = tp
  end
  cache[[:cylindrical_coordinates_gsl_tensor, ops]] = coordinates
  #save  # save the run to save the hard_cache
  return coordinates
end

#field_gsl_tensor(options) ⇒ Object



180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# File 'lib/gs2crmod/gsl_data_3d.rb', line 180

def field_gsl_tensor(options)
  species_element = field_species_element(options)
  #ep 'species_element', species_element
  if options[:t_index]
    #ep options; gets
              #raise CRFatal.new("write_phi_over_time is not enabled so this function won't work") unless @write_phi_over_time
    arr =  GSL::Tensor.new(netcdf_file.var(field_netcdf_name(options[:field_name], true)).get({'start' => [0,(options[:thetamin]||0),0,0, species_element, options[:t_index] - 1].compact, 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1, species_element, options[:t_index] - 1].compact}))
    #ep 'arr.shape', arr.shape
    arr.reshape!(*arr.shape.slice(1...arr.shape.size))
    
  else
    arr =  GSL::Tensor.new(netcdf_file.var(field_netcdf_name(options[:field_name])).get({'start' => [0,(options[:thetamin]||0),0,0, species_element].compact, 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1, species_element].compact}))
    #ep 'arr.shape', arr.shape
  end
  if species_element
    arr.reshape!(*arr.shape.slice(1...arr.shape.size))
  end
  if options[:interpolate_x]
    shape = arr.narray.shape
    #p 'shape', shape
    shape[2] = (shape[2]-1)*options[:interpolate_x] + 1
    #p shape
    arr = GSL::Tensor.new(arr.narray.expand(*shape, 0.0))
  end
  if options[:interpolate_y]
    shape = arr.narray.shape
    #p 'shape', shape
    shape[3] = (shape[3]-1)*options[:interpolate_y] + 1
    #p shape
    arr = GSL::Tensor.new(arr.narray.expand(*shape, 0.0))
  end

  if gryfx? and options[:periodic]
    shape = arr.narray.shape
    shape[1]+=1
    arr = GSL::Tensor.new(arr.narray.expand(*shape, 0.0))
    shpe = arr.shape
    for i in 0...shpe[0]
      for j in 0...shpe[1]
        for r in 0...shpe[3]
          arr[i, j, -1, r] = arr[i, j, 0, r]
        end
      end
    end

  end

  arr[0, true, true, true] = 0.0 if options[:no_zonal]
  #arr = arr[options[:nakx] ? 0...options[:nakx] : true, options[:naky] ? 0...options[:naky] : true, true, true] if options[:nakx] or options[:naky]
  return arr

end

#field_netcdf_name(field_name, time_varying = false) ⇒ Object



155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# File 'lib/gs2crmod/gsl_data_3d.rb', line 155

def field_netcdf_name(field_name, time_varying = false)
  #p field_name.to_s
  name =  case field_name.to_s
          when /phi/
            time_varying ? 'phi_t' : 'phi'
          when /density/
            time_varying ? 'ntot_t' : 'density'
          when /apar/
            time_varying ? 'apar_t' : 'apar'
          else
            raise "Unknown field name: #{field_name}"
          end
  #p name
  return name
end

#field_real_space_gsl_tensor(options) ⇒ Object



239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# File 'lib/gs2crmod/gsl_data_3d.rb', line 239

def field_real_space_gsl_tensor(options)
  fieldc = field_gsl_tensor_complex(options)
  shape = fieldc.shape
  workspacex = GSL::Vector::Complex.alloc(shape[1])
  workspacey = GSL::Vector.alloc(shape[0]*2-2+shape[0]%2)
  field_real_space = GSL::Tensor.alloc(workspacey.size, shape[1], shape[2])
  for j in 0...shape[2] #theta
    for i in 0...shape[0] #ky
      #narr = fieldc[i, true, j] 
      for k in 0...shape[1]
        workspacex[k] = GSL::Complex.alloc(fieldc[i,k,j].real, fieldc[i,k,j].imag)
      end
      workspacex = workspacex.backward
      for k in 0...shape[1]
        fieldc[i,k,j] = Complex(*workspacex[k].to_a)
      end
    end
    for k in 0...shape[1] #kx
      m = 0
      for i in 0...shape[0] #ky
        workspacey[m] = fieldc[i,k,j].real
        m+=1
        next if i==0 or (shape[0]%2==0 and i == shape[0]/2 + 1)
        workspacey[m] = fieldc[i,k,j].imag
        m+=1
      end
      workspacey = workspacey.backward
      for i in 0...workspacey.size
        field_real_space[i,k,j] = workspacey[i]
      end
    end
  end
  shp = field_real_space.shape
  #ep options
  field_real_space = field_real_space[options[:ymin]||0..options[:ymax]||(shp[0]-1), options[:xmin]||0..options[:xmax]||(shp[1]-1), true] 
  if kint = options[:interpolate_theta]
    shape = field_real_space.shape
    new_shape = shape.dup
    new_shape[-1] = ((shape[-1]-1)*kint+1)
    field_real_space_new = GSL::Tensor.float(*new_shape)
    #p shape,new_shape
    for i in 0...(new_shape[0])
    for j in 0...(new_shape[1])
    field_real_space_new[i,j, new_shape[-1]-1] = field_real_space[i,j,shape[-1]-1] # set the endpoint
    for k in 0...(new_shape[-1]-1)
      km = k%kint
      frac = km.to_f/kint.to_f
      #kold = (k-km)/(new_shape[-1]-1)*(shape[-1]-1)
      kold = (k-km)/kint
      #ep ['k', k, 'kold', kold]
      field_real_space_new[i,j, k] = field_real_space[i,j, kold] * (1.0-frac) + field_real_space[i,j, kold+1] * frac
    end
    end
    end
    field_real_space = field_real_space_new
  end  

  return field_real_space

end

#field_real_space_gsl_tensor_2(options) ⇒ Object



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# File 'lib/gs2crmod/gsl_data_3d.rb', line 299

def field_real_space_gsl_tensor_2(options)
  field = field_gsl_tensor(options)
  field_narray = field.narray
  shape = field.shape
  workspacex = GSL::Vector::Complex.alloc(shape[1])
  workspacey = GSL::Vector.alloc(shape[0]*2-2+shape[0]%2)
  field_real_space = GSL::Tensor.alloc(workspacey.size, shape[1], shape[2])
  field_real_space_narray = field_real_space.narray
  for j in 0...shape[2] #theta
    for i in 0...shape[0] #ky
      #narr = fieldc[i, true, j] 
      for k in 0...shape[1]
        workspacex[k] = GSL::Complex.alloc(field_narray[0,j,k,i], field_narray[1,j,k,i])
      end
      workspacex = workspacex.backward
      for k in 0...shape[1]
        field_narray[0,j,k,i] = workspacex[k].real
        field_narray[1,j,k,i] = workspacex[k].imag
      end
    end
    for k in 0...shape[1] #kx
      m = 0
      for i in 0...shape[0] #ky
        workspacey[m] = field_narray[0,j,k,i]
        m+=1
        next if i==0 or (shape[0]%2==0 and i == shape[0]/2 + 1)
        workspacey[m] = field_narray[1,j,k,i]
        m+=1
      end
      workspacey = workspacey.backward
      for i in 0...workspacey.size
        field_real_space_narray[j,k,i] = workspacey[i]
      end
    end
  end
  shp = field_real_space.shape
  #p 'test', field_real_space[0,2,3]
  #ep options
  field_real_space = field_real_space[options[:ymin]||0..options[:ymax]||(shp[0]-1), options[:xmin]||0..options[:xmax]||(shp[1]-1), true] 
  #p 'test2', field_real_space[0,2,3]
  if kint = options[:interpolate_theta]
    shape = field_real_space.shape
    new_shape = shape.dup
    new_shape[-1] = ((shape[-1]-1)*kint+1)
    field_real_space_new = GSL::Tensor.float(*new_shape)
    field_real_space_new_narray = field_real_space_new.narray
    #p shape,new_shape
    for i in 0...(new_shape[0])
    for j in 0...(new_shape[1])
    field_real_space_new_narray[new_shape[-1]-1, j, i] = field_real_space_narray[shape[-1]-1, j, i] # set the endpoint
    for k in 0...(new_shape[-1]-1)
      km = k%kint
      frac = km.to_f._orig_div(kint.to_f)
      #kold = (k-km)/(new_shape[-1]-1)*(shape[-1]-1)
      kold = (k-km)._orig_div(kint)
      #ep ['k', k, 'kold', kold]
      field_real_space_new_narray[k,j,i] = field_real_space_narray[kold,j,i]._orig_mul(1.0-frac) + field_real_space_narray[kold+1,j,i]._orig_mul(frac)
      #if (i==0 and j==2 and k==3)
        #p ['frac', frac]
      #end
    end
    end
    end
    field_real_space = field_real_space_new
  end  
  #p field_real_space_new.shape;

  return field_real_space

end

#field_species_element(options) ⇒ Object



170
171
172
173
174
175
176
177
178
179
# File 'lib/gs2crmod/gsl_data_3d.rb', line 170

def field_species_element(options)
  case options[:field_name].to_s
  when /density/
    options.convert_to_index(self, :species)
    #ep 'options', options
    options[:species_index] - 1
  else
    nil
  end
end

#geometric_factors_gsl_tensor(options) ⇒ Object

Order is R0,Z0,a0,Rprim,Zprim,aprim



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# File 'lib/gs2crmod/gsl_data_3d.rb', line 376

def geometric_factors_gsl_tensor(options)
  #ops = options.dup; ops.delete :phi
#ep ops; gets
  case @equilibrium_option
  when "s-alpha"
    return geometric_factors_salpha_gsl_tensor(options)
  else
    theta_vec = gsl_vector(:theta, options)
    factors = GSL::Tensor.alloc(6,theta_vec.size)
    values = File.read("#@directory/#@run_name.g").split(/\s*\n\s*/)
    3.times{values.shift}
    values = values.map{|str| str.split(/\s+/).map{|s| s.to_f}}.transpose
    #ep values
    shape = factors.shape
    for i in 0...shape[0]
        unless options[:interpolate_theta]
          for j in 0...shape[1]
            factors[i,j] = values[i+1][j]
          end
        else
          opts = options.dup
          opts[:interpolate_theta] = nil
          theta_vec_short = gsl_vector(:theta, {})
          #p 'sizes', [theta_vec_short.size, values[i+1].to_gslv.size]
          interp = GSL::ScatterInterp.alloc(:linear, [theta_vec_short, values[i+1].to_gslv], true)
          for j in 0...theta_vec.size
            factors[i,j] = interp.eval(theta_vec[j])
          end
        end
    end
    #ep factors
    return factors
  end
end

#moment_gsl_tensor(options) ⇒ Object



136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# File 'lib/gs2crmod/gsl_data_3d.rb', line 136

def moment_gsl_tensor(options)
  if options[:t_index]
    raise ArgumentError.new("Moments are not written out as a function of time currently")
    #ep options; gets
    raise CRFatal.new("write_phi_over_time is not enabled so this function won't work") unless @write_phi_over_time
    arr =  GSL::Tensor.new(netcdf_file.var(options[:field_name].to_s + '_t').get({'start' => [0,(options[:thetamin]||0),0,0, options[:t_index] - 1], 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1, options[:t_index] - 1]}))
    #ep 'arr.shape', arr.shape
    arr.reshape!(*arr.shape.slice(1...arr.shape.size))
    
  else
    arr =  GSL::Tensor.new(netcdf_file.var(options[:moment_name]).get({'start' => [0,(options[:thetamin]||0),0,0,options[:species_element]], 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1,options[:species_element]]}))
    #ep 'arr.shape', arr.shape
  end
  arr.reshape!(*arr.shape.slice(1...arr.shape.size))
  arr[0, true, true, true] = 0.0 if options[:no_zonal]
  #arr = arr[options[:nakx] ? 0...options[:nakx] : true, options[:naky] ? 0...options[:naky] : true, true, true] if options[:nakx] or options[:naky]
  return arr

end

#phi_real_space_gsl_tensor(options) ⇒ Object

Returns a rank 3 tensor which is the real potential (i.e. Fourier transformed from the GS2 output) as a function of the y index, the x index and the theta index.



235
236
237
# File 'lib/gs2crmod/gsl_data_3d.rb', line 235

def phi_real_space_gsl_tensor(options)
  return field_real_space_gsl_tensor(options.absorb(field_name: :phi))
end