Module: NumRu::GAnalysis::QG_common
- Included in:
- QG, QG_sphere, QG_sphere_div
- Defined in:
- lib/numru/ganalysis/qg.rb
Overview
QG_common: collection of common methods for QG, QG_sphere, and QG_sphere_div.
Class Method Summary collapse
- .cut_bottom(z) ⇒ Object
-
.extend_bottom(z, val_extended = nil) ⇒ Object
Extend the bottom pressure level by the lowest thickness (a hypothetical “Under-ground” level is created) If value of the extended bottom level is set to val_extended (Numeric or NArray etc), if it is specified (non nil).
-
.gp2gpref(gp) ⇒ Object
geopotential (multi-D) -> reference geopotential profile (1D).
-
.gpd2qzz(gp, b) ⇒ Object
[ (p/b) gp_z ]_z /p.
-
.gph2gpd_gpref(gph) ⇒ Object
geopotential height to geopotential deviation from the global&time mean.
-
.gph2gpref(gph) ⇒ Object
geopotential height (multi-D) -> reference geopotential profile (1D).
-
.gpref2n2(gpref) ⇒ Object
reference geopotential -> buoyancy frequency squared.
Instance Method Summary collapse
-
#div_waf(fx, fy, fz, bottom_treatment = true) ⇒ Object
div of WAF .
-
#waf_tn2001(gph, gphbs, nx: nil, ny: nil, ubs: nil, vbs: nil, zonal: false, merid: false, n2: nil, derive_M0: false) ⇒ Object
Wave activity flux by Takaya and Nakamura (2001) (TN2001).
Class Method Details
.cut_bottom(z) ⇒ Object
154 155 156 157 158 159 160 161 162 |
# File 'lib/numru/ganalysis/qg.rb', line 154 def cut_bottom(z) pdim = Met.find_prs_d(z) plev = z.coord(pdim).val if plev[0] - plev[1] > 0 z[ *([true]*pdim + [1..-1,false]) ] else z[ *([true]*pdim + [0..-2,false]) ] end end |
.extend_bottom(z, val_extended = nil) ⇒ Object
Extend the bottom pressure level by the lowest thickness (a hypothetical “Under-ground” level is created) If value of the extended bottom level is set to val_extended (Numeric or NArray etc), if it is specified (non nil). If nil, the value at the original bottom level is simply copied.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# File 'lib/numru/ganalysis/qg.rb', line 127 def extend_bottom(z, val_extended=nil) pdim = Met.find_prs_d(z) plev = z.coord(pdim).val raise("Only one pressure level is found; 2 or more needed") if (plev==1) bottom_first = ( plev[0] - plev[1] > 0 ) np = z.shape[pdim] idx = (0...np).collect{|i| i} if bottom_first # The first level is the bottom one idx.unshift(0) # idx => [0,0,1,2,...,np-1] ihb = 0 # index of the extended bottom level dp = plev[0] - plev[1] phb = plev[0] + dp # pressure of the extended bottom level else # The last level is the bottom one idx.push(np-1) # idx => [0,1,2,...,np-1,np-1] ihb = np # index of the extended bottom level dp = plev[-1] - plev[-2] phb = plev[-1] + dp # pressure of the extended bottom level end ze = z[ *([true]*pdim + [idx,false]) ].copy # add one level below ze.coord(pdim)[ihb] = phb if val_extended ze[ *([true]*pdim + [ihb,false]) ] = val_extended end ze end |
.gp2gpref(gp) ⇒ Object
geopotential (multi-D) -> reference geopotential profile (1D)
24 25 26 27 28 29 30 31 32 33 34 35 36 |
# File 'lib/numru/ganalysis/qg.rb', line 24 def gp2gpref(gp) gpref = Planet::ave_s(gp) # horizontal ave (spherical) if gpref.rank >= 2 # likely a time sequence. need to reduce more. pdim = Met.find_prs_d(gpref) idxs = (0...gpref.rank).collect{|i| i} idxs.delete(pdim) gpref = gpref.mean(*idxs) end gpref.name = "gpref" gpref.long_name = "Reference geopotential" gpref end |
.gpd2qzz(gp, b) ⇒ Object
[ (p/b) gp_z ]_z /p
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'lib/numru/ganalysis/qg.rb', line 65 def gpd2qzz(gp, b) bunits = Units["s-2"] # this is assumed! pdim = Met.find_prs_d(gp) p = gp.coord(pdim) z = LogP.p2z(p) zunits = z.units g = Derivative::( gp.val, pdim ) z = Derivative::( z.val, 0 ) p = Derivative::( p.val, 0 ) b = b.val b = b.to_na if b.respond_to?(:to_na) # likely a NArrayMiss b = Derivative::( b, 0 ) pb = p/b pbm = (pb[0..-2] + pb[1..-1]) / 2.0 # pb_{i+1/2} (for i=0..-2) pbm01 = pbm[0..-2] # pb_{i-1/2} (for i=1..-2) pbm12 = pbm[1..-1] # pb_{i+1/2} (for i=1..-2) dz20 = z[2..-1] - z[0..-3] # z_{i+1} - z_{i-1} (for i=1..-2) dz21 = z[2..-1] - z[1..-2] # z_{i+1} - z_{i} (for i=1..-2) dz10 = z[1..-2] - z[0..-3] # z_{i} - x_{i-1} (for i=1..-2) pc = p[1..-2] # p_{i} (for i=1..-2) a2 = 2*pbm12/(dz21*dz20)/pc a0 = 2*pbm01/(dz10*dz20)/pc a1 = -a2 - a0 to_rankD = [1]*pdim + [true] + [1]*(gp.rank-pdim-1) a2 = a2.reshape(*to_rankD) a1 = a1.reshape(*to_rankD) a0 = a0.reshape(*to_rankD) vqzz = g[ *([true]*pdim+[2..-1,false]) ] * a2 \ + g[ *([true]*pdim+[1..-2,false]) ] * a1 \ + g[ *([true]*pdim+[0..-3,false]) ] * a0 qzz = gp.copy qzz.data.replace_val(vqzz) qzz.name = "qzz" qzz.long_name = "z-deriv term in QG PV" qzz.units = qzz.units / zunits**2 / bunits qzz end |
.gph2gpd_gpref(gph) ⇒ Object
geopotential height to geopotential deviation from the global&time mean
40 41 42 43 44 45 46 47 |
# File 'lib/numru/ganalysis/qg.rb', line 40 def gph2gpd_gpref(gph) gp = gph * Met::g gpref = gp2gpref(gp) gpd = gp - gpref gpd.name = "gpd" gpd.long_name = "Geopotential deviation" [gpd, gpref] end |
.gph2gpref(gph) ⇒ Object
geopotential height (multi-D) -> reference geopotential profile (1D)
18 19 20 |
# File 'lib/numru/ganalysis/qg.rb', line 18 def gph2gpref(gph) gp2gpref(gph) * Met::g end |
.gpref2n2(gpref) ⇒ Object
reference geopotential -> buoyancy frequency squared
51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/numru/ganalysis/qg.rb', line 51 def gpref2n2(gpref) gp_z = LogP.pcdata_dz( gpref ) gp_zz = LogP.pcdata_dz2( gpref ) gp_zz[0] = gp_zz[1] # At boundary, it's safer to extend lapse rate gp_zz[-1] = gp_zz[-2] # At boundary, it's safer to extend lapse rate n2 = gp_zz + gp_z * (Met::Kappa / LogP.h) n2.name = "N2" n2.long_name = "N**2 (log-p)" #p "@@@@@ N2 @@@@",n2.coord(0).val.to_a, n2.val.sqrt.to_a n2 end |
Instance Method Details
#div_waf(fx, fy, fz, bottom_treatment = true) ⇒ Object
div of WAF
(p cos_phi)^-1 div(p waf) = (cos_phi)^-1 ( div_h(fx,fy) + p^-1 d_z (p fz) )
-
fx, fy, fz (GPhys) : the x, y and z components of waf
-
bottom_treatment (true (==default) or false) : If true, the lowest level vertical divergence is computed by assuming that fz is zero at the extended “underground” level. The thickness assumed (=p-p) is consistent with the ((<extend_bottom>)) method.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/numru/ganalysis/qg.rb', line 185 def div_waf(fx, fy, fz, bottom_treatment=true) cosphi = cos_phi(fx) p = Met.get_prs(fx) fz_z = LogP.pcdata_dz( fz*p ) / p #>>>>>> the lowest layer treatment consistent with qb, in which # geopotential (or stream function) is extended by extend_bottom. # Assumption: the first level is the lowest (bottom) one if bottom_treatment # using the relation p^{-1} d/dz = -H^{-1} d/dp # and assuming fz=0 below the bottom (the "underground" level), # p^{-1} d/dz (p fz) = -H^{-1} d/dp (p fz), # which is H^{-1} p fz / delta_p, at the lowest level with a # "thickness" of delta_p. w = p[0..1].val dp = w[1] - w[0] p0 = w[0] pdim = Met.find_prs_d(fz) sel0 = [true]*pdim + [0,false] # to specify the first level fz_z[*sel0] = fz[*sel0]*p0 / (LogP.h*dp) end #<<<<<< divh = ( div_h(fx, fy) + fz_z ) / cosphi # ^ div_h is defined in QG, QG_sphere,..., but not in QG_common divh.name = "divwaf" divh.long_name = "div of waf (#{fx.name},..)" divh end |
#waf_tn2001(gph, gphbs, nx: nil, ny: nil, ubs: nil, vbs: nil, zonal: false, merid: false, n2: nil, derive_M0: false) ⇒ Object
Wave activity flux by Takaya and Nakamura (2001) (TN2001)
This method works by mix-in in QG (Cartesian) or QG_sphere (spherical). (so the call it either as QG::waf_tn2001(gph, gphbs, ..) or QG_sphere::waf_tn2001(gph, gphbs, ..) ).
DEFINITIONS
-
if called through QG: a modified version of Eq (32) of TN2001
-
if called through QG_sphere: a modified version of Eq (38) of TN2001
The modification of Eq (32) and (38) is as follows:
-
The multiplication by p is omitted. This is because
it is more convenient to do it afterwords if needed (for example, to integrate with p would require not to have done this multiplication). -
The C_u M term is not included as in convention. (but the multiplication by cos(phi) is done in QG_sphere). Note that this term vanishes for stationary waves, because C_u=0.
-
The normal vector (n1, n2) in TN2001 can be set flexibly. This vector is called (nx, ny) in this method, since n2 is used for the buoyancy frequency. In eqs. (32) and (38), (nx, ny) is prescribed as (nx, ny) = (U,V)/|U,V| where U is ubs and V is vbs. However, this relation is not necessarily valid, since (nx, ny) is originally attributed to the QGPV gradient of the basic flow. Therefore, in this method, (nx, ny) can be set arbitrary. Also, one can set (nx, ny) = (1, 0) or (0, 1) by setting the optional argument zonal or merid to true.
ARGUMENTS
-
gph: geopotential height
-
gphbs: geopotential height (basic state). Basically, it needs to have the same spacial grid as gph, but it can be a meridional section (such as zonal mean), if the normal vector is specified by (ubs, vbs) or (nx, ny) or zonal or merid.
-
nx, ny: normalized vector to designate the direction of wave propagation. By default, set to the direction of (ubs, vbs), or set by zonal/merid (see below).
-
ubs, vbs: Basic state zonal and meridional winds to compute the normal vector (nx,ny) as (ubs,vbs)/sqrt(ubs**2 + vbs**2). Neglected if nx and ny are specified. By default ubs and vbs are derived geostrophically from gphbs
-
zonal: derive the flux in the zonal direction assuming (nx,ny)=(1,0)
-
merid: derive the flux in the meridional dir assuming (nx,ny)=(0,1)
-
n2: Brunt-Vaisala (buoyancy) frequency squared. By default, derived from gphbs
-
derive_M0: derive M (the wave-activity pseudomomentum of TN20001) when the wave is stationary (cp=0). You need to give ubs and vbs (or have them derived from gphbs by not using nx, ny, zonal or merid) to make this option available.
RETURN VALUE
- wx, wy, wz, ret_hash
-
where [wx, wy, wz] are the WAF vector
and ret_hash provides extra derived quantities such as the perturbation stream function (:pp), pseudomomentum M0 (:M0), etc.
REFERENCE
-
Takaya and Namaura (2001): A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci, 58, 608-627.
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# File 'lib/numru/ganalysis/qg.rb', line 276 def waf_tn2001(gph, gphbs, nx: nil, ny: nil, ubs: nil, vbs: nil, zonal: false, merid: false, n2: nil, derive_M0: false) #< prepration > if self==QG f = f0 wgt = nil elsif self==QG_sphere f = f_mask0(gph) wgt = cos_phi(gph) else raise("unsupported module to mix-in #{self}") end ret_hash = Hash.new #< perturbation stream function > gf = Met::g / f pp = (gph - gphbs)*gf # psi' (perturbation stream function) if /gpm/i =~ (us=pp.units.to_s) pp.units = us.sub(/gpm/i,'m') end ret_hash[:pp] = pp #< derive nx, ny if not given > ul = psibs = nil if zonal nx = 1.0 ny = 0.0 elsif merid nx = 0.0 ny = 1.0 elsif nx.nil? && ny.nil? if !ubs || !vbs psibs, gpref = gph2psi_gpref(gphbs) if /gpm/i =~ (us=psibs.units.to_s) psibs.units = us.sub(/gpm/i,'m') end ubs, vbs = psi2ug_vg(psibs) ret_hash[:ubs] = ubs ret_hash[:vbs] = vbs ret_hash[:gpref] = gpref end ul = (ubs**2+vbs**2).sqrt nx = ubs/ul ny = vbs/ul end #< derive aspect ratio > unless n2 n2 = LogP::gph2n2(gphbs) ret_hash[:n2] = n2 end eps = f**2/n2 #< cross terms --> WAF > px,py = grad_h(pp) pxx,pxy = grad_h(px) pyy = grad_hy(py) unless ny==0.0 pz = LogP::pcdata_dz(pp) pxz = LogP::pcdata_dz(px) unless nx==0.0 pyz = LogP::pcdata_dz(py) unless ny==0.0 ret_hash[:px] = px ret_hash[:py] = py wx = nil unless nx==0.0 wx = px*px - pp*pxx wy = px*py - pp*pxy wz = ( px*pz - pp*pxz ) * eps nx2 = nx/2.0 wx = wx * nx2 wy = wy * nx2 wz = wz * nx2 end unless ny==0.0 wx_ = px*py - pp*pxy wy_ = py*py - pp*pyy wz_ = (py*pz - pp*pyz) * eps ny2 = ny/2.0 wx_ = wx_ * ny2 wy_ = wy_ * ny2 wz_ = wz_ * ny2 if wx wx += wx_ wy += wy_ wz += wz_ else wx = wx_ wy = wy_ wz = wz_ end end if wgt wx = wx * wgt wy = wy * wgt wz = wz * wgt end wx.name = "Wx" wy.name = "Wy" wz.name = "Wz" wx.long_name = "WAFx" wy.long_name = "WAFy" wz.long_name = "WAFz" #< derive M0 if required > if derive_M0 raise("ubs and vbs are needed to derive M0") if !ubs || !vbs ul = (ubs**2+vbs**2).sqrt unless ul unless psibs psibs, gpref = gph2psi_gpref(gphbs) if /gpm/i =~ (us=psibs.units.to_s) psibs.units = us.sub(/gpm/i,'m') end ret_hash[:gpref] = gpref end n2p = Planet::ave_s(n2) if n2p.rank >= 2 pdim = Met.find_prs_d(n2p) ds = Array.new (0...n2p.rank).each do |d| ds.push(d) unless d == pdim end n2p = n2p.mean(*ds) end qp, = psi2q(pp,n2p) qbs, = psi2q(psibs,n2p) qbx, qby = grad_h(qbs) e2 = px**2 + py**2 + pz**2 * eps # 2*e qbgrad = (qbx**2+qby**2).sqrt.running_mean(0,3).running_mean(1,3) a = qp**2 / qbgrad / 4.0 # A of TN2001 e0 = e2 / ul / 4.0 # E of TN2001 when cp=0 m0 = a + e0 a.name = "A" a.long_name = "A" e0.name = "E0" e0.long_name = "stationary E" m0.name = "M0" m0.long_name = "stationary TN2001 pseudomomentum" ret_hash[:qp] = qp ret_hash[:qbs] = qbs ret_hash[:A] = a ret_hash[:E0] = e0 ret_hash[:M0] = m0 end #< return > [wx, wy, wz, ret_hash] end |