Class: NumRu::GPhys
- Inherits:
-
Object
- Object
- NumRu::GPhys
- Defined in:
- lib/numru/ganalysis/fitting.rb,
lib/numru/gphys/grib.rb,
lib/numru/ganalysis/eof.rb,
lib/numru/ganalysis/met.rb,
lib/numru/gphys/ep_flux.rb,
lib/numru/gphys/version.rb,
lib/numru/gphys/gphys_io.rb,
lib/numru/ganalysis/log_p.rb,
lib/numru/gphys/gphys_fft.rb,
lib/numru/gphys/gphys_dim_op.rb,
lib/numru/ganalysis/histogram.rb,
lib/numru/gphys/gphys_grib_io.rb,
lib/numru/ganalysis/covariance.rb,
lib/numru/gphys/coordtransform.rb,
lib/numru/gphys/gphys_grads_io.rb,
lib/numru/gphys/gphys_gtool3_io.rb,
lib/numru/gphys/gphys_io_common.rb,
lib/numru/gphys/gphys_netcdf_io.rb,
lib/numru/gphys/gphys_nusdas_io.rb
Overview
GPhys extension with GAnalysis::Fitting
Defined Under Namespace
Modules: EP_Flux, GrADS_IO, GribUtils, Grib_IO, Gtool3_IO, IO, IO_Common, NetCDF_IO, NuSDaS_IO Classes: Grib, GribDim, GribVar
Constant Summary collapse
- VERSION =
"1.4.3.2"- COS_TAPER_SP_FACTOR =
1.0 / 0.875
- BC_SIMPLE =
enum in convol_filter.c
10- BC_CYCLIC =
enum in convol_filter.c
11- BC_TRIM =
enum in convol_filter.c
12- @@fft_forward =
-1
- @@fft_backward =
1- @@fft_ignore_missing =
false- @@fft_missing_replace_val =
nil- @@default_missval =
NC_FILL_DOUBLE/FLOAT ~15*2^119
9.9692099683868690e+36
Class Method Summary collapse
Instance Method Summary collapse
-
#bin_mean(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (mean).
-
#bin_sum(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (summation).
- #coordtransform(coordmapping, axes_to, *dims) ⇒ Object
- #corelation(other, *dims) ⇒ Object (also: #correlation)
-
#cos_taper(*dims) ⇒ Object
Spectral factor for the cosine taper.
- #covariance(other, *dims) ⇒ Object
- #detrend(*dims) ⇒ Object
- #eof(*args) ⇒ Object
- #fft(backward = false, *dims) ⇒ Object
- #fft_deriv(dim) ⇒ Object
- #histogram(opts = Hash.new) ⇒ Object (also: #histogram1D)
- #least_square_fit(functions, ensemble_dims = nil, indep_dims = nil) ⇒ Object
-
#logp_coord_p2z(pdim = nil) ⇒ Object
Convert the pressure coordinate in self to log-pressure height (after duplicating self).
- #phase_velocity(kdim, fdim, kconv, fconv, kf0_is_c0 = true, no_kfreorder = false) ⇒ Object
- #phase_velocity_binning(kdim, fdim, cbins, kconv = nil, fconv = nil) ⇒ Object
- #phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv = nil, fconv = nil) ⇒ Object
- #phase_velocity_filter(xdim, tdim, cmin = nil, cmax = nil, xconv = nil, tconv = nil, remove_xtmean = false) ⇒ Object
- #rawspect2powerspect(*dims) ⇒ Object
-
#running_mean(dim, len_or_wgt = nil, bc = BC_SIMPLE, nminvalid = 1) ⇒ Object
Running mean along a dimension (with optional weight specification).
- #spect_one_sided(dim) ⇒ Object
- #spect_zero_centering(dim) ⇒ Object
Class Method Details
.fft_ignore_missing(ignore = true, replace_val = nil) ⇒ Object
331 332 333 334 |
# File 'lib/numru/gphys/gphys_fft.rb', line 331 def self.fft_ignore_missing( ignore=true, replace_val=nil ) @@fft_ignore_missing = ignore @@fft_missing_replace_val = replace_val end |
Instance Method Details
#bin_mean(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (mean)
The values are averaged every “len” grids; unlike running_mean the number of grids is reduced to 1/len. Currently, the only available boundary condition is BC_TRIM.
ARGUMENTS
-
dim (Integer or String) : the dimension
-
len (Integer): length of the bin
-
nminvalid (Integer; optional; defualt=1): Effective only for data with missing. Minimum number of grid points needed for averaging (1 to len).
RETURN VALUE
-
a GPhys
113 114 115 116 |
# File 'lib/numru/gphys/gphys_dim_op.rb', line 113 def bin_mean(dim, len, nminvalid=1) dim = dim_index(dim) # to handle String or negative specification GPhys.new( grid.binning(dim, len), data.bin_mean(dim, len, nminvalid) ) end |
#bin_sum(dim, len, nminvalid = 1) ⇒ Object
Binning along a dimension (summation)
Similar to bin_mean, but the values are simply summed without averaging
ARGUMENTS
-
dim (Integer or String) : the dimension
-
len (Integer): length of the bin
-
nminvalid (Integer; optional; defualt=1): Effective only for data with missing. Minimum number of grid points needed for averaging (1 to len).
RETURN VALUE
-
a GPhys
131 132 133 134 |
# File 'lib/numru/gphys/gphys_dim_op.rb', line 131 def bin_sum(dim, len, nminvalid=1) dim = dim_index(dim) # to handle String or negative specification GPhys.new( grid.binning(dim, len), data.bin_sum(dim, len, nminvalid) ) end |
#coordtransform(coordmapping, axes_to, *dims) ⇒ Object
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# File 'lib/numru/gphys/coordtransform.rb', line 41 def coordtransform( coordmapping, axes_to, *dims ) rankmp = coordmapping.rank #< check arguments > if axes_to.length != rankmp raise ArgumentError, "length of axes_to must be equal to the rank of coordmapping" end if self.rank == rankmp dims = (0...rankmp).collect{|i| i} elsif self.rank < rankmp raise ArgumentError,"rank of coordmapping is greater than self.rank" elsif dims.length != rankmp raise ArguemntError, "# of dimensions speficied is not equal to the rank of coordmapping" elsif dims != dims.sort raise ArguementErroor,"dims must be in the increasing order" end #< get grid points > vt = coordmapping.map_grid( *dims.collect{|d| axes_to[d].pos.val} ) x = dims.collect{|d| self.grid.axis(d).pos.val} #< prepare the output object > axes = (0...self.rank).collect{|i| grid.axis(i)} dims.each_with_index{|d,j| axes[d]=axes_to[j]} grid_to = Grid.new( *axes ) vnew = VArray.new( NArray.new( self.data.ntype, *grid_to.shape ), self.data, self.name ) #< do interpolation (so far only 2D is supported) > case dims.length when 2 if !HAVE_NUMRU_SSL2 p "interpolation without SSL2" # raise "Sorry, so far I need SSL2 (ruby-ssl2)" self.( *dims ){ |fxy,idx| wgts = Array.new idxs = Array.new for d in 0..dims.length-1 wgt = vt[d].dup.fill!(-1.0) idx0 = vt[d].dup.to_i.fill!(-1) idx1 = idx0.dup.fill!(x[d].length) xsort = x[d].sort xsortindex = x[d].sort_index for i in 0..x[d].length-1 idx0[ xsort[i] <= vt[d] ] = xsortindex[i] idx1[ xsort[-1-i] >= vt[d] ] = xsortindex[-1-i] end # where idx0=idx1 wgt[ idx0.eq(idx1) ] = 1.0 # where vt[d] < x[d].min wgt[ idx0 <= -1 ] = 1.0 idx0[ idx0 <= -1 ] = 0 # where vt[d] > x[d].max wgt[ idx1 >= x[d].length ] = 0.0 idx1[ idx1 >= x[d].length ] = x[d].length-1 # normal points mask = wgt.eq(-1.0) wgt[mask] = (vt[d][mask]-x[d][idx0[mask]])/(x[d][idx1[mask]]-x[d][idx0[mask]]) wgts.push(wgt) idxs[d*2] = idx0 idxs[d*2+1] = idx1 end case dims.length # when 1 # f = fxy.data.val[idxs[0]]*(1-wgts[0]) + # fxy.data.val[idxs[1]]*wgts[0] # f = f.to_na if( f.class.to_s == "NArrayMiss" ) when 2 lx = fxy.shape[0] f = ( fxy.data.val[idxs[0]+idxs[2]*lx]*(1-wgts[0]) + fxy.data.val[idxs[1]+idxs[2]*lx]*wgts[0] ) * (1-wgts[1]) + ( fxy.data.val[idxs[0]+idxs[3]*lx]*(1-wgts[0]) + fxy.data.val[idxs[1]+idxs[3]*lx]*wgts[0] ) * wgts[1] f = f.to_na if( f.class.to_s == "NArrayMiss" ) else raise "Sorry, #{v.length}D interpolation is yet to be supported" end if(idx==false) vnew[] = f else vnew[*idx] = f end } else ix=iy=0 m=3 self.( *dims ){ |fxy,idx| c,xt = SSL2.bicd3(x[0],x[1],fxy.val,m) begin ix,iy,f = SSL2.bifd3(x[0],x[1],m,c,xt,0,vt[0],ix,0,vt[1],iy) rescue $stderr.print "Interpolation into", vt[0].inspect, vt[1].inspect raise $! end vnew[*idx] = f } end else raise "Sorry, #{v.length}D interpolation is yet to be supported" end #< finish > GPhys.new( grid_to, vnew ) end |
#corelation(other, *dims) ⇒ Object Also known as: correlation
93 94 95 |
# File 'lib/numru/ganalysis/covariance.rb', line 93 def corelation(other, *dims) GAnalysis.corelation(self, other, *dims) end |
#cos_taper(*dims) ⇒ Object
Spectral factor for the cosine taper. Specta should be multiplied by this.
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# File 'lib/numru/gphys/gphys_fft.rb', line 339 def cos_taper(*dims) if dims.length < 1 raise ArgumentError,'You have to specify one or more dimensions' end dims.sort!.uniq! val = self.data.val dims.each{|dim| dim = dim_index(dim) if dim.is_a?(String) dim += rank if dim < 0 raise ArgumentError,"dim #{dim} does not exist" if dim<0 || dim>rank nx = shape[dim] wgt = NArray.float(nx).fill!(1) x = 10.0 / nx * (NArray.float(nx).indgen!+0.5) wskl = x.lt(1).where wskr = x.gt(9).where wgt[wskl] = 0.5*( 1.0 - NMath::cos(Math::PI*x[wskl]) ) wgt[wskr] = 0.5*( 1.0 - NMath::cos(Math::PI*x[wskr]) ) wgt.reshape!( *([1]*dim + [nx] + [1]*(rank-dim-1)) ) val = val*wgt } to_ret = self.copy to_ret.data.val = val to_ret end |
#covariance(other, *dims) ⇒ Object
89 90 91 |
# File 'lib/numru/ganalysis/covariance.rb', line 89 def covariance(other, *dims) GAnalysis.covariance(self, other, *dims) end |
#detrend(*dims) ⇒ Object
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# File 'lib/numru/gphys/gphys_fft.rb', line 364 def detrend(*dims) if dims.length < 1 raise ArgumentError,'You have to specify one or more dimensions' end dims.sort!.uniq! val = self.data.val dims.each{|dim| dim = dim_index(dim) if dim.is_a?(String) dim += rank if dim < 0 raise ArgumentError,"dim #{dim} does not exist" if dim<0 || dim>rank if val.is_a?(NArray) x = self.coord(dim).val x.reshape!( *([1]*dim + [x.length] + [1]*(rank-dim-1)) ) vmean = val.mean(dim) vxmean = (val*x).mean(dim) xmean = x.mean(dim) x2mean = (x*x).mean(dim) denom = x2mean-xmean**2 if denom != 0 a = (vxmean - vmean*xmean)/denom b = (vmean*x2mean - vxmean*xmean)/denom else a = 0 b = vmean end elsif val.is_a?(NArrayMiss) x = self.coord(dim).val x.reshape!( *([1]*dim + [x.length] + [1]*(rank-dim-1)) ) x = NArrayMiss.to_nam( NArray.new(x.typecode, *val.shape) + x, val.get_mask ) vmean = val.mean(dim) vxmean = (val*x).mean(dim) xmean = x.mean(dim) x2mean = (x*x).mean(dim) denom = x2mean-xmean**2 meq0 = denom.eq(0).to_na(0) # ==0 and not masked mne0 = denom.ne(0).to_na(0) # !=0 and not masked denom.set_mask(mne0) # only nonzero part will be used to divide: a = (vxmean - vmean*xmean)/denom b = (vmean*x2mean - vxmean*xmean)/denom a[meq0] = 0 b[meq0] = vmean[meq0] end a.newdim!(dim) if !a.is_a?(Numeric) b.newdim!(dim) if !b.is_a?(Numeric) val = val - a*x-b } to_ret = self.copy to_ret.data.val = val to_ret end |
#eof(*args) ⇒ Object
229 230 231 |
# File 'lib/numru/ganalysis/eof.rb', line 229 def eof(*args) GAnalysis.eof(self, *args) end |
#fft(backward = false, *dims) ⇒ Object
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# File 'lib/numru/gphys/gphys_fft.rb', line 416 def fft(backward=false, *dims) fftw3 = false if defined?(FFTW3) fftw3 = true elsif !defined?(FFTW) raise "Both FFTW3 and FFTW are not installed." end if backward==true dir = @@fft_backward elsif !backward dir = @@fft_forward else raise ArgumentError,"1st arg must be true or false (or, equivalenty, nil)" end # <FFT> gfc = self.copy # make a deep clone if fftw3 val = gfc.data.val if @@fft_ignore_missing and val.is_a?(NArrayMiss) if @@fft_missing_replace_val val = val.to_na(@@fft_missing_replace_val) else val = val.to_na end elsif val.is_a?(NArrayMiss) && val.count_invalid == 0 val = val.to_na end fcoef = FFTW3.fft( val, dir, *dims ) else # --> always FFT for all dimensions if dims.length == 0 raise ArgumentError, "dimension specification is available only if FFTW3 is installed" end val = gfc.data.val if @@fft_ignore_missing and val.is_a?(NArrayMiss) if @@fft_missing_replace_val val = val.to_na(@@fft_missing_replace_val) else val = val.to_na end elsif val.is_a?(NArrayMiss) && val.count_invalid == 0 val = val.to_na end fcoef = FFTW.fftw( val, dir ) end if dir == @@fft_forward if dims.length == 0 fcoef = fcoef / fcoef.length # normalized if forward FT else sh = fcoef.shape len = 1 dims.each{|d| raise ArgumentError, "dimension out of range" if sh[d] == nil len *= sh[d] } fcoef = fcoef / len end end gfc.data.replace_val( fcoef ) # <coordinate variables> for i in 0...gfc.rank if dims.length == 0 || dims.include?(i) || dims.include?(i+rank) __predefined_coord_units_conversion(gfc.coord(i)) cv = gfc.coord(i).val n = cv.length clen = (cv.max - cv.min) * n / (n-1) wn = (2*Math::PI/clen) * NArray.new(cv.typecode,cv.length).indgen! if (!backward) gfc.coord(i).set_att('origin_in_real_space',cv[0..0]) else if ( org = gfc.coord(i).get_att('origin_in_real_space') ) wn += org[0] ###gfc.coord(i).del_att('origin_in_real_space') end end gfc.coord(i).replace_val(wn) gfc.coord(i).units = gfc.coord(i).units**(-1) __coord_name_conversion(gfc.coord(i), backward) end end # <fini> gfc end |
#fft_deriv(dim) ⇒ Object
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
# File 'lib/numru/gphys/gphys_fft.rb', line 505 def fft_deriv(dim) tp = self.data.typecode fc = self.fft(false,dim) wn = fc.coord(dim) k = wn.val.to_type(NArray::Complex) n = k.length n2a = (n-1)/2 n2b = [n/2 + 1, n-1].min # min to avoid error if n=2 (though meaningless) kmx = k[-1]+k[1] ik = NArray.complex(n) ik[0..n2a] = k[0..n2a]*Complex::I ik[n2b..-1] = (k[n2b..-1]-kmx) * Complex::I dim.times{ik.newdim!(0)} (self.rank-dim-1).times{ik.newdim!(-1)} fc.replace_val(fc.val*ik) deriv = fc.fft(true,dim) deriv.units = deriv.units * wn.units if tp >= NArray::SCOMPLEX deriv else deriv.real end end |
#histogram(opts = Hash.new) ⇒ Object Also known as: histogram1D
155 156 157 |
# File 'lib/numru/ganalysis/histogram.rb', line 155 def histogram(opts=Hash.new) GAnalysis.histogram(self, opts) end |
#least_square_fit(functions, ensemble_dims = nil, indep_dims = nil) ⇒ Object
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# File 'lib/numru/ganalysis/fitting.rb', line 460 def least_square_fit(functions, ensemble_dims=nil, indep_dims=nil) #< preparation > no_fitting_dims = Array.new if ensemble_dims ensemble_dims = ensemble_dims.collect{|d| @grid.dim_index(d)} no_fitting_dims += ensemble_dims end if indep_dims indep_dims = indep_dims.collect{|d| @grid.dim_index(d)} no_fitting_dims += indep_dims end fitting_dims = (0...rank).collect{|i| i} - no_fitting_dims grid_locs = fitting_dims.collect{|d| coord(d).val} data = self.val #< fitting > c, bf, diff = GAnalysis::Fitting.least_square_fit(data, grid_locs, functions, ensemble_dims, indep_dims) #< make a GPhys of the best fit > if !ensemble_dims grid = self.grid else axes = Array.new (0...rank).each{|d| axes.push(self.axis(d)) unless ensemble_dims.include?(d) } grid = Grid.new(*axes) shape = bf.shape ensemble_dims.sort.reverse_each{|d| shape.delete_at(d)} bf = bf.reshape(*shape) end va = VArray.new(bf, self.data, self.name) bf = GPhys.new(grid, va) [c, bf, diff] end |
#logp_coord_p2z(pdim = nil) ⇒ Object
Convert the pressure coordinate in self to log-pressure height (after duplicating self)
Return value: a GPhys
84 85 86 87 88 89 90 91 92 93 |
# File 'lib/numru/ganalysis/log_p.rb', line 84 def logp_coord_p2z(pdim=nil) pdim = GAnalysis::Met.find_prs_d(self) if !pdim p = self.coord(pdim) z = GAnalysis::LogP.p2z(p) ax = self.axis(pdim).copy ax.set_pos(z) ax.name = z.name grid = self.grid.copy.set_axis(pdim, ax) GPhys.new(grid,self.data) end |
#phase_velocity(kdim, fdim, kconv, fconv, kf0_is_c0 = true, no_kfreorder = false) ⇒ Object
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
# File 'lib/numru/gphys/gphys_fft.rb', line 757 def phase_velocity(kdim,fdim,kconv,fconv,kf0_is_c0=true,no_kfreorder=false) kax = self.axis(kdim) fax = self.axis(fdim) kax.pos = kax.pos*kconv if kconv fax.pos = fax.pos*fconv if fconv cunits = fax.pos.units / kax.pos.units f = fax.pos.val k = kax.pos.val nk = k.length nf = f.length if no_kfreorder k[nk/2+1..-1] = -k[nk/2+1..-1][-1..0]+k[nk/2] f[nf/2+1..-1] = -f[nf/2+1..-1][-1..0]+f[nf/2] end f = -f cp = f.newdim(0) / k.newdim(1) #cp[kdim,fdim] jf0 = f.eq(0).where[0] # where f==0 jk0 = k.eq(0).where[0] # where k==0 if kf0_is_c0 cp[jk0,jf0] = 0.0 # treat k=f=0 as stationary (c=0) else cp[jk0,jf0] = 1.0/0.0 # not to count k=f=0 component at all (c=infty) end [cp, cunits] end |
#phase_velocity_binning(kdim, fdim, cbins, kconv = nil, fconv = nil) ⇒ Object
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
# File 'lib/numru/gphys/gphys_fft.rb', line 673 def phase_velocity_binning(kdim, fdim, cbins, kconv=nil, fconv=nil) # < process arguments > case cbins when Hash min = cbins["min"] ||raise(ArgumentError,"a Hash cbins must have 'min'") max = cbins["max"] ||raise(ArgumentError,"a Hash cbins must have 'max'") int = cbins["int"] ||raise(ArgumentError,"a Hash cbins must have 'int'") cbins = Array.new eps = int.abs*1e-6 # epsilon to deal with float steps (min.to_f..(max.to_f+eps)).step(int){|c| cbins.push(c)} cbins = NArray.to_na(cbins) when Array cbins = NArray.to_na(cbins) when NArray else raise ArgumentError, "cbins must be a Hash or Array or NArray" end kdim = dim_index(kdim) if kdim.is_a?(String) kdim += rank if kdim < 0 fdim = dim_index(fdim) if fdim.is_a?(String) fdim += rank if fdim < 0 # < sort along wavenumber/freuqency axis > pw = self.spect_zero_centering(kdim).spect_one_sided(fdim) # < process axes > cp, cunits = pw.phase_velocity(kdim,fdim,kconv,fconv,false) vcbins = VArray.new(cbins, {"units"=>cunits.to_s, "long_name"=>"phase velocity bounds"}, "cbounds") vccent = VArray.new( (cbins[0..-2] + cbins[1..-1])/2, {"units"=>cunits.to_s, "long_name"=>"phase velocity"}, "c") axc = Axis.new(true).set_cell(vccent, vcbins).set_pos_to_center axes = [axc] # the first dimension will be "c" gr = pw.grid (0...pw.rank).each do |d| if d!=kdim && d!=fdim axes.push(gr.axis(d)) end end newgrid = Grid.new(*axes) nk = pw.shape[kdim] nf = pw.shape[fdim] cp.reshape!(nk*nf) # < reorder input data > dimorder = (0...pw.rank).collect{|i| i} dimorder.delete(fdim) dimorder.unshift(fdim) dimorder.delete(kdim) dimorder.unshift(kdim) # --> [kdim, fdim, the other dims...] sh = pw.shape reshape = [nk*nf] (0...rank).each{|i| reshape.push(sh[i]) if i!=fdim && i!=kdim} pwv = pw.val.transpose(*dimorder).reshape(*reshape) # --> [ combined k&fdim, the other dims...] # < binning > shc = newgrid.shape pwc = NArray.new(pwv.typecode, *shc) # will have no missing data nc = axc.length for jc in 0...nc w = (cp.gt(cbins[jc]) & cp.lt(cbins[jc+1])).where pwc[jc,false] += pwv[w,false].sum(0) if w.length>0 w = (cp.eq(cbins[jc])).where pwc[jc,false] += pwv[w,false].sum(0)/2 if w.length>0 # half from bdry w = (cp.eq(cbins[jc+1])).where pwc[jc,false] += pwv[w,false].sum(0)/2 if w.length>0 # half from bdry end vpwc = VArray.new(pwc,pw.data,pw.name) gpwc = GPhys.new(newgrid,vpwc) gpwc end |
#phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv = nil, fconv = nil) ⇒ Object
665 666 667 668 669 670 671 |
# File 'lib/numru/gphys/gphys_fft.rb', line 665 def phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv=nil, fconv=nil) cbins = {"min"=>cmin,"max"=>cmax,"int"=>cint} pwc = phase_velocity_binning(kdim, fdim, cbins, kconv, fconv) fact = UNumeric[int, pwc.coord(0).units] pwc/fact end |
#phase_velocity_filter(xdim, tdim, cmin = nil, cmax = nil, xconv = nil, tconv = nil, remove_xtmean = false) ⇒ Object
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
# File 'lib/numru/gphys/gphys_fft.rb', line 628 def phase_velocity_filter(xdim, tdim, cmin=nil, cmax=nil, xconv=nil, tconv=nil, remove_xtmean=false) raise(ArgumentError,"need at least cmin or cmax") if !(cmin || cmax) xdim = dim_index(xdim) if xdim.is_a?(String) xdim += rank if xdim < 0 tdim = dim_index(tdim) if tdim.is_a?(String) tdim += rank if tdim < 0 fc = self.fft(nil,xdim,tdim) kdim = xdim fdim = tdim kconv = ( xconv ? 1.0/xconv : nil ) fconv = ( tconv ? 1.0/tconv : nil ) cp, = fc.phase_velocity(kdim,fdim,kconv,fconv,!remove_xtmean,true) fcv = fc.val nk = fc.shape[kdim] nf = fc.shape[fdim] sel = [true]*fc.rank for jf in 0...nf for jk in 0...nk c = cp[jk,jf] if ( cmin && c<cmin or cmax && c>cmax) sel[kdim]=jk sel[fdim]=jf fcv[*sel] = 0.0 end end end fc.replace_val(fcv) gp = fc.fft(true,xdim,tdim) gp = gp.real if (self.typecode <= NArray::FLOAT) GPhys.new(self.grid_copy, gp.data) #^ use the original grid, since units may have changed end |
#rawspect2powerspect(*dims) ⇒ Object
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
# File 'lib/numru/gphys/gphys_fft.rb', line 612 def rawspect2powerspect(*dims) # developpers memo: Needs Units conversion. factor = nil dims.each{|dim| ax = self.coord(dim) dwn = UNumeric.new( ((ax[-1].val - ax[0].val)/(ax.length - 1)).abs, ax.units ) if !factor factor = dwn**(-1) else factor = factor / dwn end } self * factor end |
#running_mean(dim, len_or_wgt = nil, bc = BC_SIMPLE, nminvalid = 1) ⇒ Object
Running mean along a dimension (with optional weight specification).
ARGUMENTS
-
dim (Integer or String) : the dimension
-
len_or_wgt : If Integer, specifies the length; if 1D NArray, specifies the weight (e.g., NArray[1.0, 2.0, 1.0] for the 1-2-1 smooting)
-
bc (Integer; optional) : Speficy one of the folloing:
-
GPhys::BC_SIMPLE (default) : Averaging is trucated at the boundaries (the number of grid points used is reduced near the boundaries). The shape of the object is conserved.
-
GPhys::BC_CYCLIC : Cyclic boundary condition. Shape conserved.
-
GPhys::BC_TRIM : Grids near the boundaries are trimmed to secure the number of grid points to average. Shape not conserved; length along the dim is reduced by (len-1).
-
-
nminvalid (Integer; optional; defualt=1): This parameter is used only when the data have missing. Minimum number of grid points needed for averaging. Must be from 1 to len.
RETURN VALUE
-
a GPhys
REMARK AND LIMITATION
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# File 'lib/numru/gphys/gphys_dim_op.rb', line 46 def running_mean(dim, len_or_wgt=nil, bc=BC_SIMPLE, nminvalid=1) #< process arguments > dim = dim_index(dim) # to handle String or negative specification case len_or_wgt when nil raise ArgumentError, "You need to specify the length (Integer) or the weight (1D NArray) as the 2nd argument" when Integer # len_or_wgt is a length len = len_or_wgt wgt = NArray.float(len).fill!(1.0) else # len_or_wgt is a weight wgt = len_or_wgt if (!wgt.respond_to?(:rank) || wgt.rank != 1) raise ArgumentError, "wgt: expect a 1D NArray(-like obj)" end len = wgt.length end #< calc running mean > vi = self.val if (vi.typecode > NArray::DFLOAT) raise("This method supports only real or integer data") end if vi.is_a?(NArrayMiss) vi, missval = nam2na_missval(vi) vo = c_running_mean(vi,dim,wgt,bc,missval,nminvalid) vo = NArrayMiss.to_nam(vo, vo.ne(missval) ) else vo = c_running_mean(vi,dim,wgt,bc) end #< grid > if (bc == BC_TRIM) fst = (len-1)/2 # if odd len/2, if even len/2-1 lst = -(len/2) - 1 grid = self.grid[ *([true]*dim + [fst..lst, false]) ] else grid = self.grid end #< result > vvo = VArray.new( vo, self.data, self.name ) # Inherit name & attrs GPhys.new( grid, vvo ) end |
#spect_one_sided(dim) ⇒ Object
601 602 603 604 605 606 607 608 609 610 |
# File 'lib/numru/gphys/gphys_fft.rb', line 601 def spect_one_sided(dim) dim = dim + self.rank if dim<0 len = self.shape[dim] b = self[ *([true]*dim + [0..len/2,false]) ] * 2 b[*([true]*dim + [0,false])] = b[*([true]*dim + [0,false])] / 2 if (self.shape[dim] % 2) == 0 # --> even number b[*([true]*dim + [-1,false])] = b[*([true]*dim + [-1,false])] / 2 end b end |
#spect_zero_centering(dim) ⇒ Object
587 588 589 590 591 592 593 594 595 596 597 598 599 |
# File 'lib/numru/gphys/gphys_fft.rb', line 587 def spect_zero_centering(dim) dim = dim + self.rank if dim<0 len = self.shape[dim] b = self[ *( [true]*dim + [[(len+1)/2..len-1,0..len/2],false] ) ].copy s1 = [true]*dim + [0, false] s2 = [true]*dim + [-1, false] if (len % 2) == 0 #--> even number b[*s1] = b[*s1]/2 # the ends are duplicated --> halved b[*s2] = b[*s1] end b.coord(dim)[0..len/2-1] = -b.coord(dim)[len/2+1..-1].val[-1..0] b end |