Class: Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec

Inherits:
Object
  • Object
show all
Extended by:
Protobuf::MessageExts::ClassMethods
Includes:
Protobuf::MessageExts
Defined in:
proto_docs/google/cloud/aiplatform/v1/study.rb

Overview

Represents a single parameter to optimize.

Defined Under Namespace

Modules: ScaleType Classes: CategoricalValueSpec, ConditionalParameterSpec, DiscreteValueSpec, DoubleValueSpec, IntegerValueSpec

Instance Attribute Summary collapse

Instance Attribute Details

#categorical_value_spec::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::CategoricalValueSpec



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end

#conditional_parameter_specs::Array<::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec>



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end

#discrete_value_spec::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DiscreteValueSpec



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end

#double_value_spec::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::DoubleValueSpec



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end

#integer_value_spec::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::IntegerValueSpec



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end

#parameter_id::String



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end

#scale_type::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ScaleType



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# File 'proto_docs/google/cloud/aiplatform/v1/study.rb', line 347

class ParameterSpec
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Value specification for a parameter in `DOUBLE` type.
  # @!attribute [rw] min_value
  #   @return [::Float]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Float]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DOUBLE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DoubleValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `INTEGER` type.
  # @!attribute [rw] min_value
  #   @return [::Integer]
  #     Required. Inclusive minimum value of the parameter.
  # @!attribute [rw] max_value
  #   @return [::Integer]
  #     Required. Inclusive maximum value of the parameter.
  # @!attribute [rw] default_value
  #   @return [::Integer]
  #     A default value for an `INTEGER` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class IntegerValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `CATEGORICAL` type.
  # @!attribute [rw] values
  #   @return [::Array<::String>]
  #     Required. The list of possible categories.
  # @!attribute [rw] default_value
  #   @return [::String]
  #     A default value for a `CATEGORICAL` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class CategoricalValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Value specification for a parameter in `DISCRETE` type.
  # @!attribute [rw] values
  #   @return [::Array<::Float>]
  #     Required. A list of possible values.
  #     The list should be in increasing order and at least 1e-10 apart.
  #     For instance, this parameter might have possible settings of 1.5, 2.5,
  #     and 4.0. This list should not contain more than 1,000 values.
  # @!attribute [rw] default_value
  #   @return [::Float]
  #     A default value for a `DISCRETE` parameter that is assumed to be a
  #     relatively good starting point.  Unset value signals that there is no
  #     offered starting point.  It automatically rounds to the
  #     nearest feasible discrete point.
  #
  #     Currently only supported by the Vertex AI Vizier service. Not supported
  #     by HyperparameterTuningJob or TrainingPipeline.
  class DiscreteValueSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end

  # Represents a parameter spec with condition from its parent parameter.
  # @!attribute [rw] parent_discrete_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::DiscreteValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `DISCRETE` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_discrete_values`, `parent_int_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_int_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::IntValueCondition]
  #     The spec for matching values from a parent parameter of `INTEGER`
  #     type.
  #
  #     Note: The following fields are mutually exclusive: `parent_int_values`, `parent_discrete_values`, `parent_categorical_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parent_categorical_values
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec::ConditionalParameterSpec::CategoricalValueCondition]
  #     The spec for matching values from a parent parameter of
  #     `CATEGORICAL` type.
  #
  #     Note: The following fields are mutually exclusive: `parent_categorical_values`, `parent_discrete_values`, `parent_int_values`. If a field in that set is populated, all other fields in the set will automatically be cleared.
  # @!attribute [rw] parameter_spec
  #   @return [::Google::Cloud::AIPlatform::V1::StudySpec::ParameterSpec]
  #     Required. The spec for a conditional parameter.
  class ConditionalParameterSpec
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods

    # Represents the spec to match discrete values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Float>]
    #     Required. Matches values of the parent parameter of 'DISCRETE' type.
    #     All values must exist in `discrete_value_spec` of parent parameter.
    #
    #     The Epsilon of the value matching is 1e-10.
    class DiscreteValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match integer values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::Integer>]
    #     Required. Matches values of the parent parameter of 'INTEGER' type.
    #     All values must lie in `integer_value_spec` of parent parameter.
    class IntValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end

    # Represents the spec to match categorical values from parent parameter.
    # @!attribute [rw] values
    #   @return [::Array<::String>]
    #     Required. Matches values of the parent parameter of 'CATEGORICAL'
    #     type. All values must exist in `categorical_value_spec` of parent
    #     parameter.
    class CategoricalValueCondition
      include ::Google::Protobuf::MessageExts
      extend ::Google::Protobuf::MessageExts::ClassMethods
    end
  end

  # The type of scaling that should be applied to this parameter.
  module ScaleType
    # By default, no scaling is applied.
    SCALE_TYPE_UNSPECIFIED = 0

    # Scales the feasible space to (0, 1) linearly.
    UNIT_LINEAR_SCALE = 1

    # Scales the feasible space logarithmically to (0, 1). The entire
    # feasible space must be strictly positive.
    UNIT_LOG_SCALE = 2

    # Scales the feasible space "reverse" logarithmically to (0, 1). The
    # result is that values close to the top of the feasible space are spread
    # out more than points near the bottom. The entire feasible space must be
    # strictly positive.
    UNIT_REVERSE_LOG_SCALE = 3
  end
end