Class: Google::Cloud::AIPlatform::V1::RagVectorDbConfig
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::RagVectorDbConfig
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/vertex_rag_data.rb
Overview
Config for the Vector DB to use for RAG.
Defined Under Namespace
Classes: Pinecone, RagManagedDb, VertexVectorSearch
Instance Attribute Summary collapse
-
#api_auth ⇒ ::Google::Cloud::AIPlatform::V1::ApiAuth
Authentication config for the chosen Vector DB.
-
#pinecone ⇒ ::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::Pinecone
The config for the Pinecone.
-
#rag_embedding_model_config ⇒ ::Google::Cloud::AIPlatform::V1::RagEmbeddingModelConfig
Optional.
-
#rag_managed_db ⇒ ::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb
The config for the RAG-managed Vector DB.
-
#vertex_vector_search ⇒ ::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::VertexVectorSearch
The config for the Vertex Vector Search.
Instance Attribute Details
#api_auth ⇒ ::Google::Cloud::AIPlatform::V1::ApiAuth
Returns Authentication config for the chosen Vector DB.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'proto_docs/google/cloud/aiplatform/v1/vertex_rag_data.rb', line 82 class RagVectorDbConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The config for the default RAG-managed Vector DB. # @!attribute [rw] knn # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::KNN] # Performs a KNN search on RagCorpus. # Default choice if not specified. # # Note: The following fields are mutually exclusive: `knn`, `ann`. If a field in that set is populated, all other fields in the set will automatically be cleared. # @!attribute [rw] ann # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::ANN] # Performs an ANN search on RagCorpus. Use this if you have a lot of # files (> 10K) in your RagCorpus and want to reduce the search latency. # # Note: The following fields are mutually exclusive: `ann`, `knn`. If a field in that set is populated, all other fields in the set will automatically be cleared. class RagManagedDb include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Config for KNN search. class KNN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Config for ANN search. # # RagManagedDb uses a tree-based structure to partition data and # facilitate faster searches. As a tradeoff, it requires longer indexing # time and manual triggering of index rebuild via the ImportRagFiles and # UpdateRagCorpus API. # @!attribute [rw] tree_depth # @return [::Integer] # The depth of the tree-based structure. Only depth values of 2 and 3 are # supported. # # Recommended value is 2 if you have if you have O(10K) files in the # RagCorpus and set this to 3 if more than that. # # Default value is 2. # @!attribute [rw] leaf_count # @return [::Integer] # Number of leaf nodes in the tree-based structure. Each leaf node # contains groups of closely related vectors along with their # corresponding centroid. # # Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). # # Default value is 500. class ANN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for the Pinecone. # @!attribute [rw] index_name # @return [::String] # Pinecone index name. # This value cannot be changed after it's set. class Pinecone include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for the Vertex Vector Search. # @!attribute [rw] index_endpoint # @return [::String] # The resource name of the Index Endpoint. # Format: # `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}` # @!attribute [rw] index # @return [::String] # The resource name of the Index. # Format: # `projects/{project}/locations/{location}/indexes/{index}` class VertexVectorSearch include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#pinecone ⇒ ::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::Pinecone
Returns The config for the Pinecone.
Note: The following fields are mutually exclusive: pinecone, rag_managed_db, vertex_vector_search. If a field in that set is populated, all other fields in the set will automatically be cleared.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'proto_docs/google/cloud/aiplatform/v1/vertex_rag_data.rb', line 82 class RagVectorDbConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The config for the default RAG-managed Vector DB. # @!attribute [rw] knn # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::KNN] # Performs a KNN search on RagCorpus. # Default choice if not specified. # # Note: The following fields are mutually exclusive: `knn`, `ann`. If a field in that set is populated, all other fields in the set will automatically be cleared. # @!attribute [rw] ann # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::ANN] # Performs an ANN search on RagCorpus. Use this if you have a lot of # files (> 10K) in your RagCorpus and want to reduce the search latency. # # Note: The following fields are mutually exclusive: `ann`, `knn`. If a field in that set is populated, all other fields in the set will automatically be cleared. class RagManagedDb include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Config for KNN search. class KNN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Config for ANN search. # # RagManagedDb uses a tree-based structure to partition data and # facilitate faster searches. As a tradeoff, it requires longer indexing # time and manual triggering of index rebuild via the ImportRagFiles and # UpdateRagCorpus API. # @!attribute [rw] tree_depth # @return [::Integer] # The depth of the tree-based structure. Only depth values of 2 and 3 are # supported. # # Recommended value is 2 if you have if you have O(10K) files in the # RagCorpus and set this to 3 if more than that. # # Default value is 2. # @!attribute [rw] leaf_count # @return [::Integer] # Number of leaf nodes in the tree-based structure. Each leaf node # contains groups of closely related vectors along with their # corresponding centroid. # # Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). # # Default value is 500. class ANN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for the Pinecone. # @!attribute [rw] index_name # @return [::String] # Pinecone index name. # This value cannot be changed after it's set. class Pinecone include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for the Vertex Vector Search. # @!attribute [rw] index_endpoint # @return [::String] # The resource name of the Index Endpoint. # Format: # `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}` # @!attribute [rw] index # @return [::String] # The resource name of the Index. # Format: # `projects/{project}/locations/{location}/indexes/{index}` class VertexVectorSearch include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#rag_embedding_model_config ⇒ ::Google::Cloud::AIPlatform::V1::RagEmbeddingModelConfig
Returns Optional. Immutable. The embedding model config of the Vector DB.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'proto_docs/google/cloud/aiplatform/v1/vertex_rag_data.rb', line 82 class RagVectorDbConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The config for the default RAG-managed Vector DB. # @!attribute [rw] knn # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::KNN] # Performs a KNN search on RagCorpus. # Default choice if not specified. # # Note: The following fields are mutually exclusive: `knn`, `ann`. If a field in that set is populated, all other fields in the set will automatically be cleared. # @!attribute [rw] ann # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::ANN] # Performs an ANN search on RagCorpus. Use this if you have a lot of # files (> 10K) in your RagCorpus and want to reduce the search latency. # # Note: The following fields are mutually exclusive: `ann`, `knn`. If a field in that set is populated, all other fields in the set will automatically be cleared. class RagManagedDb include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Config for KNN search. class KNN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Config for ANN search. # # RagManagedDb uses a tree-based structure to partition data and # facilitate faster searches. As a tradeoff, it requires longer indexing # time and manual triggering of index rebuild via the ImportRagFiles and # UpdateRagCorpus API. # @!attribute [rw] tree_depth # @return [::Integer] # The depth of the tree-based structure. Only depth values of 2 and 3 are # supported. # # Recommended value is 2 if you have if you have O(10K) files in the # RagCorpus and set this to 3 if more than that. # # Default value is 2. # @!attribute [rw] leaf_count # @return [::Integer] # Number of leaf nodes in the tree-based structure. Each leaf node # contains groups of closely related vectors along with their # corresponding centroid. # # Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). # # Default value is 500. class ANN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for the Pinecone. # @!attribute [rw] index_name # @return [::String] # Pinecone index name. # This value cannot be changed after it's set. class Pinecone include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for the Vertex Vector Search. # @!attribute [rw] index_endpoint # @return [::String] # The resource name of the Index Endpoint. # Format: # `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}` # @!attribute [rw] index # @return [::String] # The resource name of the Index. # Format: # `projects/{project}/locations/{location}/indexes/{index}` class VertexVectorSearch include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#rag_managed_db ⇒ ::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb
Returns The config for the RAG-managed Vector DB.
Note: The following fields are mutually exclusive: rag_managed_db, pinecone, vertex_vector_search. If a field in that set is populated, all other fields in the set will automatically be cleared.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'proto_docs/google/cloud/aiplatform/v1/vertex_rag_data.rb', line 82 class RagVectorDbConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The config for the default RAG-managed Vector DB. # @!attribute [rw] knn # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::KNN] # Performs a KNN search on RagCorpus. # Default choice if not specified. # # Note: The following fields are mutually exclusive: `knn`, `ann`. If a field in that set is populated, all other fields in the set will automatically be cleared. # @!attribute [rw] ann # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::ANN] # Performs an ANN search on RagCorpus. Use this if you have a lot of # files (> 10K) in your RagCorpus and want to reduce the search latency. # # Note: The following fields are mutually exclusive: `ann`, `knn`. If a field in that set is populated, all other fields in the set will automatically be cleared. class RagManagedDb include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Config for KNN search. class KNN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Config for ANN search. # # RagManagedDb uses a tree-based structure to partition data and # facilitate faster searches. As a tradeoff, it requires longer indexing # time and manual triggering of index rebuild via the ImportRagFiles and # UpdateRagCorpus API. # @!attribute [rw] tree_depth # @return [::Integer] # The depth of the tree-based structure. Only depth values of 2 and 3 are # supported. # # Recommended value is 2 if you have if you have O(10K) files in the # RagCorpus and set this to 3 if more than that. # # Default value is 2. # @!attribute [rw] leaf_count # @return [::Integer] # Number of leaf nodes in the tree-based structure. Each leaf node # contains groups of closely related vectors along with their # corresponding centroid. # # Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). # # Default value is 500. class ANN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for the Pinecone. # @!attribute [rw] index_name # @return [::String] # Pinecone index name. # This value cannot be changed after it's set. class Pinecone include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for the Vertex Vector Search. # @!attribute [rw] index_endpoint # @return [::String] # The resource name of the Index Endpoint. # Format: # `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}` # @!attribute [rw] index # @return [::String] # The resource name of the Index. # Format: # `projects/{project}/locations/{location}/indexes/{index}` class VertexVectorSearch include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#vertex_vector_search ⇒ ::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::VertexVectorSearch
Returns The config for the Vertex Vector Search.
Note: The following fields are mutually exclusive: vertex_vector_search, rag_managed_db, pinecone. If a field in that set is populated, all other fields in the set will automatically be cleared.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'proto_docs/google/cloud/aiplatform/v1/vertex_rag_data.rb', line 82 class RagVectorDbConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The config for the default RAG-managed Vector DB. # @!attribute [rw] knn # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::KNN] # Performs a KNN search on RagCorpus. # Default choice if not specified. # # Note: The following fields are mutually exclusive: `knn`, `ann`. If a field in that set is populated, all other fields in the set will automatically be cleared. # @!attribute [rw] ann # @return [::Google::Cloud::AIPlatform::V1::RagVectorDbConfig::RagManagedDb::ANN] # Performs an ANN search on RagCorpus. Use this if you have a lot of # files (> 10K) in your RagCorpus and want to reduce the search latency. # # Note: The following fields are mutually exclusive: `ann`, `knn`. If a field in that set is populated, all other fields in the set will automatically be cleared. class RagManagedDb include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Config for KNN search. class KNN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Config for ANN search. # # RagManagedDb uses a tree-based structure to partition data and # facilitate faster searches. As a tradeoff, it requires longer indexing # time and manual triggering of index rebuild via the ImportRagFiles and # UpdateRagCorpus API. # @!attribute [rw] tree_depth # @return [::Integer] # The depth of the tree-based structure. Only depth values of 2 and 3 are # supported. # # Recommended value is 2 if you have if you have O(10K) files in the # RagCorpus and set this to 3 if more than that. # # Default value is 2. # @!attribute [rw] leaf_count # @return [::Integer] # Number of leaf nodes in the tree-based structure. Each leaf node # contains groups of closely related vectors along with their # corresponding centroid. # # Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). # # Default value is 500. class ANN include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for the Pinecone. # @!attribute [rw] index_name # @return [::String] # Pinecone index name. # This value cannot be changed after it's set. class Pinecone include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for the Vertex Vector Search. # @!attribute [rw] index_endpoint # @return [::String] # The resource name of the Index Endpoint. # Format: # `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}` # @!attribute [rw] index # @return [::String] # The resource name of the Index. # Format: # `projects/{project}/locations/{location}/indexes/{index}` class VertexVectorSearch include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |