Class: Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/feature_view.rb
Overview
Configuration for vector indexing.
Defined Under Namespace
Modules: DistanceMeasureType Classes: BruteForceConfig, TreeAHConfig
Instance Attribute Summary collapse
-
#brute_force_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig
Optional.
-
#crowding_column ⇒ ::String
Optional.
-
#distance_measure_type ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType
Optional.
-
#embedding_column ⇒ ::String
Optional.
-
#embedding_dimension ⇒ ::Integer
Optional.
-
#filter_columns ⇒ ::Array<::String>
Optional.
-
#tree_ah_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig
Optional.
Instance Attribute Details
#brute_force_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig
Returns Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.
Note: The following fields are mutually exclusive: brute_force_config, tree_ah_config. If a field in that set is populated, all other fields in the set will automatically be cleared.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#crowding_column ⇒ ::String
Returns Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService.SearchNearestEntities to diversify search results. If NearestNeighborQuery.per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#distance_measure_type ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType
Returns Optional. The distance measure used in nearest neighbor search.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#embedding_column ⇒ ::String
Returns Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#embedding_dimension ⇒ ::Integer
Returns Optional. The number of dimensions of the input embedding.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#filter_columns ⇒ ::Array<::String>
Returns Optional. Columns of features that're used to filter vector search results.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#tree_ah_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig
Returns Optional. Configuration options for the tree-AH algorithm (Shallow tree
- Asymmetric Hashing). Please refer to this paper for more details: https://arxiv.org/abs/1908.10396
Note: The following fields are mutually exclusive: tree_ah_config, brute_force_config. If a field in that set is populated, all other fields in the set will automatically be cleared.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 183 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |