Class: GMP::RandState

Inherits:
Object
  • Object
show all
Defined in:
ext/gmp.c,
ext/gmprandstate.c

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(*args) ⇒ Object



101
102
103
104
105
106
107
108
109
110
# File 'ext/gmprandstate.c', line 101

VALUE r_gmprandstate_initialize(int argc, VALUE *argv, VALUE self)
{
  MP_RANDSTATE *self_val;
  (void)argv;

  if (argc != 0) {
    mprandstate_get_struct(self,self_val);
  }
  return Qnil;
}

Class Method Details

.GMP::RandState.newObject .GMP::RandState.new(: mt) ⇒ Object .GMP::RandState.new(: lc_2exp, a, c, m2exp) ⇒ Object .GMP::RandState.new(: lc_2exp_size, size) ⇒ Object

Initializes a new Random State object. Multiple GMP::RandState objects can be instantiated. They may use different generators and the states are kept separate.



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# File 'ext/gmprandstate.c', line 40

VALUE r_gmprandstatesg_new(int argc, VALUE *argv, VALUE klass)
{
  MP_RANDSTATE *rs_val;
  VALUE rs;
  VALUE algorithm, arg2, arg3, arg4;
  ID algorithm_id = rb_intern("default");
  MP_INT *a_val = NULL;
  unsigned long c_val, m2exp_val;
  unsigned long size_val;
  int free_a_val = 0;

  ID default_algorithm      = rb_intern("default");
  ID mt_algorithm           = rb_intern("mt");
  ID lc_2exp_algorithm      = rb_intern("lc_2exp");
  ID lc_2exp_size_algorithm = rb_intern("lc_2exp_size");

  (void)klass;

  mprandstate_make_struct(rs, rs_val);
  rb_scan_args(argc, argv, "04", &algorithm, &arg2, &arg3, &arg4);
  if (NIL_P(algorithm))    { algorithm_id = rb_intern("default"); }  /* default value */
  if (SYMBOL_P(algorithm)) { algorithm_id = rb_to_id(algorithm); }
  if (algorithm_id == default_algorithm ||
      algorithm_id == mt_algorithm) {
    if (argc > 1)
      rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc);
    gmp_randinit_default(rs_val);
  } else if (algorithm_id == lc_2exp_algorithm) {
    if (argc != 4)
      rb_raise(rb_eArgError, "wrong number of arguments (%d for 4)", argc);
    if (GMPZ_P(arg2)) {
      mpz_get_struct(arg2, a_val);
    } else if (FIXNUM_P(arg2)) {
      mpz_temp_alloc(a_val);
      mpz_init_set_ui(a_val, FIX2INT(arg2));
      free_a_val = 1;
    } else if (BIGNUM_P(arg2)) {
      mpz_temp_from_bignum(a_val, arg2);
      free_a_val = 1;
    } else {
      typeerror_as(ZXB, "b");
    }
    c_val     = NUM2LONG(arg3);
    m2exp_val = NUM2LONG(arg4);
    gmp_randinit_lc_2exp(rs_val, a_val, c_val, m2exp_val);
  } else if (algorithm_id == lc_2exp_size_algorithm) {
    if (argc != 2)
      rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
    size_val = NUM2LONG(arg2);
    if (size_val > 128)
      rb_raise(rb_eArgError, "size must be within [0..128]");
    if (gmp_randinit_lc_2exp_size (rs_val, size_val) == 0)
      rb_raise(rb_eArgError, "could not gmp_randinit_lc_2exp_size with %lu", size_val);
  }

  if (free_a_val) { mpz_temp_free(a_val); }
  rb_obj_call_init(rs, argc, argv);

  return rs;
}

Instance Method Details

#mpfr_urandomObject

From the MPFR Manual:

> Generate a uniformly distributed random float. The floating-point number > ‘rop` can be seen as if a random real number is generated according to the > continuous uniform distribution on the interval [0, 1] and then rounded in > the direction `RNDN`.

Since:

  • 0.6.47



335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# File 'ext/gmprandstate.c', line 335

VALUE r_gmprandstate_mpfr_urandom(int argc, VALUE *argv, VALUE self_val)
{
  MP_RANDSTATE *self;
  MP_FLOAT *res;
  mp_rnd_t rnd_mode;
  VALUE res_val, prec_val, rnd_mode_val;
  unsigned long int prec = 0;

  mprandstate_get_struct (self_val, self);

  rb_scan_args (argc, argv, "02", &rnd_mode_val, &prec_val);
  if (NIL_P (rnd_mode_val)) { rnd_mode = __gmp_default_rounding_mode; }
  else { rnd_mode = r_get_rounding_mode(rnd_mode_val); }

  if (NIL_P (prec_val)) {
    prec = mpfr_get_default_prec();
  } else if (FIXNUM_P (prec_val)) {
    if (FIX2INT (prec_val) < 2)
      rb_raise (rb_eRangeError, "precision must be at least 2");

    prec = FIX2INT (prec_val);
  } else {
    rb_raise (rb_eTypeError, "precision must be a Fixnum");
  }

  mpf_make_struct (res_val, res);
  mpf_init2 (res, prec);

  mpfr_urandom (res, self, rnd_mode);

  return res_val;
}

#mpfr_urandombObject

From the MPFR Manual:

> Generate a uniformly distributed random float in the interval > _0 <= rop < 1_.



289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# File 'ext/gmprandstate.c', line 289

VALUE r_gmprandstate_mpfr_urandomb(int argc, VALUE *argv, VALUE self_val)
{
  MP_RANDSTATE *self;
  MP_FLOAT *res;
  VALUE res_val;
  unsigned long prec = 0;

  if (argc > 1)
    rb_raise (rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc);

  mprandstate_get_struct (self_val, self);

  if (argc == 1) {
    if (FIXNUM_P (argv[0])) {
      if (FIX2INT (argv[0]) < 2)
        rb_raise (rb_eRangeError, "precision must be at least 2");

      prec = FIX2INT (argv[0]);
    } else {
      rb_raise (rb_eTypeError, "precision must be a Fixnum");
    }
  }

  mpf_make_struct (res_val, res);
  if (prec == 0) { mpf_init (res); }
  else           { mpf_init2 (res, prec); }

  mpfr_urandomb (res, self);

  return res_val;
}

#rrandomb(Fixnum) ⇒ Object

From the GMP Manual:

> Generate a random integer with long strings of zeros and ones in the > binary representation. Useful for testing functions and algorithms, since > this kind of random numbers have proven to be more likely to trigger > corner-case bugs. The random number will be in the range 0 to _2^n-1_, > inclusive.



256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# File 'ext/gmprandstate.c', line 256

VALUE r_gmprandstate_rrandomb(VALUE self, VALUE arg)
{
  MP_RANDSTATE *self_val;
  MP_INT *res_val;
  VALUE res = 0;

  mprandstate_get_struct(self,self_val);

  if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_rrandomb(res_val, self_val, FIX2INT(arg));
  } else {
    typeerror(X);
  }

  return res;
}

#seed(integer) ⇒ Object

From the GMP Manual:

> Set an initial seed value into state.

> The size of a seed determines how many different sequences of random > numbers that it’s possible to generate. The “quality” of the seed is the > randomness of a given seed compared to the previous seed used, and this > affects the randomness of separate number sequences. The method for > choosing a seed is critical if the generated numbers are to be used for > important applications, such as generating cryptographic keys.

> Traditionally the system time has been used to seed, but care needs to be > taken with this. If an application seeds often and the resolution of the > system clock is low, then the same sequence of numbers might be repeated. > Also, the system time is quite easy to guess, so if unpredictability is > required then it should definitely not be the only source for the seed > value. On some systems there’s a special device ‘/dev/random` which > provides random data better suited for use as a seed.



152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# File 'ext/gmprandstate.c', line 152

VALUE r_gmprandstate_seed(VALUE self, VALUE arg)
{
  MP_RANDSTATE *self_val;
  MP_INT *arg_val;

  mprandstate_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    gmp_randseed(self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    gmp_randseed_ui(self_val, FIX2INT(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    gmp_randseed(self_val, arg_val);
  } else {
    typeerror(ZXB);
  }
  return arg;
}

#urandomb(Fixnum) ⇒ Object

From the GMP Manual:

> Generate a uniformly distributed random integer in the range 0 to > _2^fixnum-1_, inclusive.



187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# File 'ext/gmprandstate.c', line 187

VALUE r_gmprandstate_urandomb(VALUE self, VALUE arg)
{
  MP_RANDSTATE *self_val;
  MP_INT *res_val;
  VALUE res = 0;

  mprandstate_get_struct(self,self_val);

  if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_urandomb(res_val, self_val, FIX2INT(arg));
  } else {
    typeerror(X);
  }

  return res;
}

#urandomm(integer) ⇒ Object

From the GMP Manual:

> Generate a uniformly distributed random integer in the range 0 to > integer-1, inclusive. integer can be an instance of GMP::Z, Fixnum, or > Bignum



215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# File 'ext/gmprandstate.c', line 215

VALUE r_gmprandstate_urandomm(VALUE self, VALUE arg)
{
  MP_RANDSTATE *self_val;
  MP_INT *res_val, *arg_val = NULL;
  int free_arg_val = 0;
  VALUE res;

  mprandstate_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2INT(arg));
    free_arg_val = 1;
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    free_arg_val = 1;
  } else {
    typeerror_as(ZXB, "arg");
  }

  mpz_make_struct_init(res, res_val);
  mpz_urandomm(res_val, self_val, arg_val);
  if (free_arg_val) { mpz_temp_free(arg_val); }

  return res;
}