Class: GMP::Z

Inherits:
Integer
  • Object
show all
Defined in:
ext/gmpz.c,
ext/gmp.c,
ext/gmpz.c

Overview

GMP Multiple Precision Integer.

Instances of this class can store variables of the type mpz_t. This class also contains many methods that act as the functions for mpz_t variables, as well as a few methods that attempt to make this library more Ruby-ish.

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(*args) ⇒ Object



693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# File 'ext/gmpz.c', line 693

VALUE r_gmpz_initialize(int argc, VALUE *argv, VALUE self)
{
  MP_INT *self_val;
  int base = 0;

  // Set up the base if 2 arguments are passed
  if (argc == 2) { // only ok if String, Fixnum
    if (STRING_P(argv[0])) {  // first arg must be a String
      if (FIXNUM_P(argv[1])) {  //  second arg must be a Fixnum
        base = FIX2INT(argv[1]);
        if ( base != 0 && ( base < 2 || base > 62) )
          rb_raise (rb_eRangeError, "base must be either 0 or between 2 and 62");
      } else {
        rb_raise (rb_eTypeError, "base must be a Fixnum between 2 and 62, not a %s.", rb_class2name (rb_class_of (argv[1])));
      }
    } else {
      rb_raise(
        rb_eTypeError,
        "GMP::Z.new() must be passed a String as the 1st argument (not a %s), if a base is passed as the 2nd argument.",
        rb_class2name (rb_class_of (argv[0]))
      );
    }
  }

  if (argc != 0) {
    mpz_get_struct (self,self_val);
    mpz_set_value (self_val, argv[0], base);
  }
  return Qnil;
}

Class Method Details

.2facObject

call-seq:

GMP::Z.send(:"2fac", n)
GMP::Z.double_fac(n)

Returns n!!, the double factorial of n.

Examples:

  • GMP::Z.double_fac( 0) #=> 1

  • GMP::Z.double_fac( 1) #=> 1

  • GMP::Z.double_fac( 2) #=> 2

  • GMP::Z.double_fac( 3) #=> 3

  • GMP::Z.double_fac( 4) #=> 8

  • GMP::Z.double_fac( 5) #=> 15

  • GMP::Z.double_fac( 6) #=> 48

  • GMP::Z.double_fac( 7) #=> 105

  • GMP::Z.double_fac( 8) #=> 384

  • GMP::Z.double_fac( 9) #=> 945

  • GMP::Z.double_fac( 10) #=> 3840

  • GMP::Z.double_fac(100)

    #=> 34243224702511976248246432895208185975118675053719198827915654463488000000000000
    

.absObject

call-seq:

a.abs

Returns the absolute value of a.

.addObject

call-seq:

GMP::Z.add(rop, op1, op2)

.addmulObject

.cdiv_q_2expObject

.cdiv_r_2expObject

.comObject

call-seq:

a.com

Returns the one’s complement of a.

.congruent?Boolean

Returns:

  • (Boolean)

.divexactObject

Functional Mappings

.divisible?Boolean

Returns:

  • (Boolean)

.double_facObject

.facObject

call-seq:

GMP::Z.fac(n)

Returns n!, the factorial of n.

Examples:

  • GMP::Z.fac(0) #=> 1

  • GMP::Z.fac(1) #=> 1

  • GMP::Z.fac(2) #=> 2

  • GMP::Z.fac(3) #=> 6

  • GMP::Z.fac(4) #=> 24

.fdiv_q_2expObject

.fdiv_r_2expObject

.fibObject

call-seq:

GMP::Z.fib(n)

Returns F[n], the nth Fibonacci number.

Examples:

  • GMP::Z.fib(1) #=> 1

  • GMP::Z.fib(2) #=> 1

  • GMP::Z.fib(3) #=> 2

  • GMP::Z.fib(4) #=> 3

  • GMP::Z.fib(5) #=> 5

  • GMP::Z.fib(6) #=> 8

  • GMP::Z.fib(7) #=> 13

.fib2Object

call-seq:

GMP::Z.fib2(n)

Returns [F[n], F[n-1]], the nth and n-1th Fibonacci numbers.

Examples:

  • GMP::Z.fib2(1) #=> [ 1, 0]

  • GMP::Z.fib2(2) #=> [ 1, 1]

  • GMP::Z.fib2(3) #=> [ 2, 1]

  • GMP::Z.fib2(4) #=> [ 3, 2]

  • GMP::Z.fib2(5) #=> [ 5, 3]

  • GMP::Z.fib2(6) #=> [ 8, 5]

  • GMP::Z.fib2(7) #=> [13, 8]

.GMP::Z.import(str, order = -1) ⇒ Object

Return a GMP::Z from a String, ‘str`.

‘order` can be 1 for most significant word first or -1 for least significant first.

There is no sign taken from the data, the result will simply be a positive integer. An application can handle any sign itself, and apply it for instance with ‘GMP::Z#neg`.



2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
# File 'ext/gmpz.c', line 2883

VALUE r_gmpzsg_import(int argc, VALUE *argv, VALUE klass)
{
  MP_INT *res;
  VALUE string_val, order_val, res_val;
  char *string;
  int order, endian;
  size_t nails;
  (void)klass;

  endian = 0;
  nails = 0;

  rb_scan_args (argc, argv, "11", &string_val, &order_val);

  if (NIL_P (order_val))
    order = -1;
  else if (! FIXNUM_P (order_val))
    typeerror_as (X, "order");
  else
    order = FIX2INT (order_val);

  mpz_make_struct(res_val, res);
  mpz_init(res);

  string = StringValuePtr (string_val);

  mpz_import (res, RSTRING_LEN(string_val), order, sizeof(char), endian, nails, string);
  return res_val;
}

.GMP::Z.inp_raw(a, stream) ⇒ Object

Input from IO object stream in the format written by ‘GMP::Z#out_raw`, and put the result in a. Return the number of bytes read, or if an error occurred, return 0.



2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
# File 'ext/gmpz.c', line 2850

VALUE r_gmpzsg_inp_raw(VALUE klass, VALUE a_val, VALUE stream_val)
{
  MP_INT *a;
  FILE *stream;
  (void)klass;

  if (! GMPZ_P(a_val))
    typeerror_as(Z, "a");

  if (TYPE (stream_val) != T_FILE)
    rb_raise (rb_eTypeError, "stream must be an IO.");

  mpz_get_struct(a_val, a);
  stream = rb_io_stdio_file (RFILE (stream_val)->fptr);
  return INT2FIX (mpz_inp_raw (a, stream));
}

.GMP::Z.jacobi(a, b) ⇒ Object

Calculate the Jacobi symbol (a/b). This is defined only for b odd and positive.



2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
# File 'ext/gmpz.c', line 2122

VALUE r_gmpzsg_jacobi(VALUE klass, VALUE a, VALUE b)
{
  MP_INT *a_val, *b_val;
  int res_val;
  int free_a_val = 0;
  int free_b_val = 0;
  (void)klass;

  if (GMPZ_P(a)) {
    mpz_get_struct(a, a_val);
  } else if (FIXNUM_P(a)) {
    mpz_temp_alloc(a_val);
    mpz_init_set_ui(a_val, FIX2NUM(a));
    free_a_val = 1;
  } else if (BIGNUM_P(a)) {
    mpz_temp_from_bignum(a_val, a);
    free_a_val = 1;
  } else {
    typeerror_as(ZXB, "a");
  }

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
    if (mpz_sgn(b_val) != 1)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    if (mpz_even_p(b_val))
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
  } else if (FIXNUM_P(b)) {
    if (FIX2NUM(b) <= 0)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    if (FIX2NUM(b) % 2 == 0)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
    mpz_temp_alloc(b_val);
    mpz_init_set_ui(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    if (mpz_sgn(b_val) != 1) {
      mpz_temp_free(b_val);
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    }
    if (mpz_even_p(b_val)) {
      mpz_temp_free(b_val);
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
    }
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "b");
  }

  res_val = mpz_jacobi(a_val, b_val);
  if (free_a_val) { mpz_temp_free(a_val); }
  if (free_b_val) { mpz_temp_free(b_val); }
  return INT2FIX(res_val);
}

.lcmObject

Functional Mappings

.lucnumObject

.mfacObject

call-seq:

GMP::Z.mfac(n, m)

Returns n!^(m), the m-multi-factorial of n.

Examples:

  • GMP::Z.mfac(0, 3) #=> 1

  • GMP::Z.mfac(1, 3) #=> 1

  • GMP::Z.mfac(2, 3) #=> 2

  • GMP::Z.mfac(3, 3) #=> 3

  • GMP::Z.mfac(4, 3) #=> 4

  • GMP::Z.mfac(5, 3) #=> 10

  • GMP::Z.mfac(6, 3) #=> 18

  • GMP::Z.mfac(7, 3) #=> 28

  • GMP::Z.mfac(8, 3) #=> 80

  • GMP::Z.mfac(9, 3) #=> 162

  • GMP::Z.mfac(10, 3) #=> 280

  • GMP::Z.mfac(11, 3) #=> 880

  • GMP::Z.mfac(12, 3) #=> 1944

.mulObject

.mul_2expObject

.negObject

call-seq:

a.neg
-a

Returns -a.

.newObject

Initializing, Assigning Integers

.nextprimeObject

call-seq:

n.nextprime
n.next_prime

Returns the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

.powObject

call-seq:

GMP::Z.pow(a, b)

Returns a raised to b. The case 0^0 yields 1.

.primorialObject

call-seq:

GMP::Z.primorial(n)

Returns the primorial of n.

Examples:

  • GMP::Z.primorial(0) #=> 1

  • GMP::Z.primorial(1) #=> 1

  • GMP::Z.primorial(2) #=> 2

  • GMP::Z.primorial(3) #=> 6

  • GMP::Z.primorial(4) #=> 6

  • GMP::Z.primorial(5) #=> 30

  • GMP::Z.primorial(6) #=> 30

  • GMP::Z.primorial(7) #=> 210

.sqrtObject

call-seq:

a.sqrt

Returns the truncated integer part of the square root of a.

.subObject

.submulObject

.tdiv_q_2expObject

.tdiv_r_2expObject

Instance Method Details

#%Object

#&Object

call-seq:

a & b

Returns a bitwise-and b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum

#*(b) ⇒ Object

Multiplies a with b. a must be an instance of one of

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
# File 'ext/gmpz.c', line 1093

VALUE r_gmpz_mul(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_get_struct(arg,arg_val);
    mpz_mul(res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    /* TODO: use mpz_mul_ui */
    mpz_mul_si(res_val, self_val, FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    return r_gmpq_mul(arg, self);
  } else if (GMPF_P(arg)) {
#ifndef MPFR
    return r_gmpf_mul(arg, self);
#else
    return rb_funcall(arg, rb_intern("*"), 1, self);
#endif
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_set_bignum(res_val, arg);
    mpz_mul(res_val, res_val, self_val);
  } else {
    typeerror(ZQFXB);
  }
  return res;
}

#**Object

call-seq:

a ** b

Returns a raised to b. The case 0^0 yields 1.

#+(b) ⇒ Object

Adds a to b. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
# File 'ext/gmpz.c', line 923

VALUE r_gmpz_add(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    mpz_make_struct_init(res, res_val);
    mpz_add(res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    if (FIX2NUM(arg) > 0)
      mpz_add_ui(res_val, self_val, FIX2NUM(arg));
    else
      mpz_sub_ui(res_val, self_val, -FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    return r_gmpq_add(arg, self);
  } else if (GMPF_P(arg)) {
#ifndef MPFR
    return r_gmpf_add(arg, self);
#else
    return rb_funcall(arg, rb_intern("+"), 1, self);
#endif
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_init(res_val);
    mpz_set_bignum(res_val, arg);
    mpz_add(res_val, res_val, self_val);
  } else {
    typeerror(ZQFXB);
  }
  return res;
}

#-(b) ⇒ Object

Subtracts b from a. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
# File 'ext/gmpz.c', line 1005

VALUE r_gmpz_sub(VALUE self, VALUE arg)
{
  MP_RAT *res_val_q, *arg_val_q;
  MP_INT *self_val, *arg_val, *res_val;
  MP_FLOAT *arg_val_f, *res_val_f;
  VALUE res;
  unsigned long prec;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_get_struct(arg,arg_val);
    mpz_sub (res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    if (FIX2NUM(arg) > 0)
      mpz_sub_ui (res_val, self_val, FIX2NUM(arg));
    else
      mpz_add_ui (res_val, self_val, -FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    mpq_make_struct_init(res, res_val_q);
    mpq_get_struct(arg,arg_val_q);
    mpz_set (mpq_denref(res_val_q), mpq_denref(arg_val_q));
    mpz_mul (mpq_numref(res_val_q), mpq_denref(arg_val_q), self_val);
    mpz_sub (mpq_numref(res_val_q), mpq_numref(res_val_q), mpq_numref(arg_val_q));
  } else if (GMPF_P(arg)) {
    mpf_get_struct_prec (arg, arg_val_f, prec);
    mpf_make_struct_init(res, res_val_f, prec);
    mpf_set_z (res_val_f, self_val);
    mpf_sub (res_val_f, res_val_f, arg_val_f);
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_sub (res_val, self_val, res_val);
  } else {
    typeerror (ZQFXB);
  }
  return res;
}

#-@Object

#/Object

Integer Division

#<Object

call-seq:

a < b

Returns whether a is strictly less than b.

#<<Object

call-seq:

a << n

Returns a times 2 raised to n. This operation can also be defined as a left shift by n bits.

#<=Object

call-seq:

a <= b

Returns whether a is less than or equal to b.

#<=>(b) ⇒ Object

Returns negative if a is less than b.

Returns 0 if a is equal to b.

Returns positive if a is greater than b.



2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
# File 'ext/gmpz.c', line 2461

VALUE r_gmpz_cmp(VALUE self, VALUE arg)
{
  MP_INT *self_val;
  int res;
  mpz_get_struct(self,self_val);
  res = mpz_cmp_value(self_val, arg);
  if (res > 0)
    return INT2FIX(1);
  else if (res == 0)
    return INT2FIX(0);
  else
    return INT2FIX(-1);
}

#==Object

#>Object

call-seq:

a > b

Returns whether a is strictly greater than b.

#>=Object

call-seq:

a >= b

Returns whether a is greater than or equal to b.

#>>Object

unsorted

#[](index) ⇒ Object

Gets the bit at index, returned as either true or false.



2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
# File 'ext/gmpz.c', line 2798

VALUE r_gmpz_getbit(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  unsigned long bitnr_val;
  mpz_get_struct(self, self_val);
  if (FIXNUM_P(bitnr)) {
    bitnr_val = FIX2NUM (bitnr);
  } else {
    typeerror_as(X, "index");
  }
  return mpz_tstbit(self_val, bitnr_val)?Qtrue:Qfalse;
}

#[]=(index) ⇒ Object

Sets the bit at index to x.



2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
# File 'ext/gmpz.c', line 2769

VALUE r_gmpz_setbit(VALUE self, VALUE bitnr, VALUE set_to)
{
  MP_INT *self_val;
  unsigned long bitnr_val;

  mpz_get_struct (self, self_val);

  if (FIXNUM_P (bitnr)) {
    if (FIX2NUM (bitnr) < 0) {
      rb_raise(rb_eRangeError, "index must be nonnegative");
    }
    bitnr_val = FIX2NUM (bitnr);
  } else {
    typeerror_as (X, "index");
  }
  if (RTEST (set_to)) {
    mpz_setbit (self_val, bitnr_val);
  } else {
    mpz_clrbit (self_val, bitnr_val);
  }
  return Qnil;
}

#^Object

call-seq:

a ^ b

Returns a bitwise exclusive-or b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum

#absObject

call-seq:

a.abs

Returns the absolute value of a.

#abs!Object

call-seq:

a.abs!

Sets a to its absolute value.

#add!(_b_) ⇒ Object

Adds a to b in-place, setting a to the sum. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
# File 'ext/gmpz.c', line 970

VALUE r_gmpz_add_self(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    mpz_add(self_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) > 0)
      mpz_add_ui(self_val, self_val, FIX2NUM(arg));
    else
      mpz_sub_ui(self_val, self_val, -FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    mpz_add(self_val, self_val, arg_val);
    mpz_temp_free(arg_val);
  } else {
    typeerror(ZXB);
  }
  return Qnil;
}

#addmul!(b, c) ⇒ Object

Sets a to a plus b times c. b and c must each be an instance of one of

  • GMP::Z

  • Fixnum

  • Bignum

Since:

  • 0.4.19



1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
# File 'ext/gmpz.c', line 1137

static VALUE r_gmpz_addmul_self(VALUE self, VALUE b, VALUE c)
{
  MP_INT *self_val, *b_val, *c_val;
  int free_b_val = 0;

  if (GMPZ_P (b)) {
    mpz_get_struct (b, b_val);
  } else if (FIXNUM_P (b)) {
    mpz_temp_alloc (b_val);
    mpz_init_set_si (b_val, FIX2NUM (b));
    free_b_val = 1;
  } else if (BIGNUM_P (b)) {
    mpz_temp_from_bignum (b_val, b);
    free_b_val = 1;
  } else {
    typeerror_as (ZXB, "addend");
  }
  mpz_get_struct (self, self_val);

  if (GMPZ_P (c)) {
    mpz_get_struct (c, c_val);
    mpz_addmul (self_val, b_val, c_val);
  } else if (TYPE (c) == T_FIXNUM) {
    if (FIX2NUM (c) < 0)
    {
      if (free_b_val) { mpz_temp_free (b_val); }
      rb_raise (rb_eRangeError, "multiplicand (Fixnum) must be nonnegative");
    }
    mpz_addmul_ui (self_val, b_val, FIX2NUM (c));
  } else if (BIGNUM_P (c)) {
    mpz_temp_from_bignum (c_val, c);
    mpz_addmul (self_val, b_val, c_val);
    mpz_temp_free (c_val);
  } else {
    if (free_b_val)
      mpz_temp_free (b_val);
    typeerror_as (ZXB, "multiplicand");
  }
  if (free_b_val)
    mpz_temp_free (b_val);
  return self;
}

#cdivObject

call-seq:

n.cdiv(d)

Divide n by d, forming a quotient q. cdiv rounds q up towards _+infinity_. The c stands for “ceil”.

q will satisfy n=q*d+r.

This function calculates only the quotient.

#cmodObject

call-seq:

n.cmod(d)

Divides n by d, forming a remainder r. r will have the opposite sign of d. The c stands for “ceil”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

#cmpabsObject

#coerce(arg) ⇒ Object



23
24
25
26
# File 'ext/gmp.c', line 23

static VALUE r_gmpz_coerce(VALUE self, VALUE arg)
{
  return rb_assoc_new(r_gmpzsg_new(1, &arg, cGMP_Z), self);
}

#comObject

call-seq:

a.com

Returns the one’s complement of a.

#com!Object

call-seq:

a.com!

Sets a to its one’s complement.

#congruent?(c, d) ⇒ Boolean

Returns true if n is congruent to c modulo d. c and d can be an instance any of the following:

  • GMP::Z

  • Fixnum

  • Bignum

Returns:

  • (Boolean)

Since:

  • 0.6.19



1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
# File 'ext/gmpz.c', line 1561

static VALUE r_gmpz_congruent(VALUE self_val, VALUE c_val, VALUE d_val)
{
  MP_INT *self, *c, *d;
  int res, free_c, free_d;
  mpz_get_struct (self_val, self);
  free_c = free_d = 0;

  if (FIXNUM_P (c_val) && FIX2NUM (c_val) > 0 &&
      FIXNUM_P (d_val) && FIX2NUM (d_val) > 0) {
    res = mpz_congruent_ui_p (self, FIX2NUM (c_val), FIX2NUM (d_val));
  } else {
    if (FIXNUM_P (c_val)) {
      mpz_make_struct_init (c_val, c);
      mpz_init_set_si (c, FIX2NUM (c_val));
    } else if (BIGNUM_P (c_val)) {
      mpz_temp_from_bignum (c, c_val);
      free_c = 1;
    } else if (GMPZ_P (c_val)) {
      mpz_get_struct (c_val, c);
    } else {
      typeerror_as (ZXB, "c");
    }

    if (FIXNUM_P (d_val)) {
      mpz_make_struct_init (d_val, d);
      mpz_init_set_si (d, FIX2NUM (d_val));
    } else if (BIGNUM_P (d_val)) {
      mpz_temp_from_bignum (d, d_val);
      free_d = 1;
    } else if (GMPZ_P (d_val)) {
      mpz_get_struct (d_val, d);
    } else {
      if (free_c) { mpz_temp_free (c); }
      typeerror_as (ZXB, "d");
    }

    res = mpz_congruent_p (self, c, d);
    if (free_c) { mpz_temp_free (c); }
    if (free_d) { mpz_temp_free (d); }
  }
  return (res != 0) ? Qtrue : Qfalse;
}

#divisible?(b) ⇒ Boolean

Returns true if a is divisible by b. b can be an instance any of the following:

  • GMP::Z

  • Fixnum

  • Bignum

Returns:

  • (Boolean)

Since:

  • 0.5.23



1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
# File 'ext/gmpz.c', line 1520

static VALUE r_gmpz_divisible(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  int res;
  mpz_get_struct (self, self_val);

  if (FIXNUM_P (arg) && FIX2NUM (arg) > 0) {
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM (arg));
    res = mpz_divisible_ui_p (self_val, FIX2NUM (arg));
    mpz_temp_free (arg_val);
  } else if (TYPE (arg) == T_FIXNUM) {
    mpz_temp_alloc (arg_val);
    mpz_make_struct_init (arg, arg_val);
    mpz_init_set_si (arg_val, FIX2NUM (arg));
    res = mpz_divisible_p (self_val, arg_val);
    mpz_temp_free (arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_temp_from_bignum (arg_val, arg);
    res = mpz_divisible_p (self_val, arg_val);
    mpz_temp_free (arg_val);
  } else if (GMPZ_P (arg)) {
    mpz_get_struct (arg, arg_val);
    res = mpz_divisible_p (self_val, arg_val);
  } else {
    typeerror_as (ZXB, "argument");
  }
  return (res != 0) ? Qtrue : Qfalse;
}

#eql?(b) ⇒ Boolean

Returns true if a is equal to b. a and b must then be equal in cardinality, and both be instances of GMP::Z. Otherwise, returns false. a.eql?(b) if and only if b.class == GMP::Z, and a.hash == b.hash.

Returns:

  • (Boolean)

Since:

  • 0.4.7



2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
# File 'ext/gmpz.c', line 2581

VALUE r_gmpz_eql(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  mpz_get_struct(self,self_val);
  
  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
    return (mpz_cmp (self_val, arg_val) == 0) ? Qtrue : Qfalse;
  }
  else {
    return Qfalse;
  }
}

#even?Boolean

call-seq:

a.even?

Determines whether a is even. Returns true or false.

Returns:

  • (Boolean)

#export(order = -1) ⇒ Object

Return a String with word data from a.

‘order` can be 1 for most significant word first or -1 for least significant first.

If ‘a` is non-zero then the most significant word produced will be non-zero. `GMP::Z(0).export` returns `“”`.

The sign of a is ignored, just the absolute value is exported. An application can use ‘GMP::Z#sgn` to get the sign and handle it as desired.



2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
# File 'ext/gmpz.c', line 2928

VALUE r_gmpz_export(int argc, VALUE *argv, VALUE self_val)
{
  MP_INT *self;
  VALUE order_val, res;
  int order, endian;
  size_t countp, nails;
  char *string;

  endian = 0;
  nails = 0;
  mpz_get_struct(self_val, self);

  rb_scan_args (argc, argv, "01", &order_val);

  if (NIL_P (order_val))
    order = -1;
  else if (! FIXNUM_P (order_val))
    typeerror_as (X, "order");
  else
    order = FIX2INT (order_val);

  string = mpz_export (NULL, &countp, order, sizeof(char), endian, nails, self);
  res = rb_str_new (string, countp);
  free (string);

  return res;
}

#fdivObject

call-seq:

n.fdiv(d)

Divide n by d, forming a quotient q. fdiv rounds q down towards -infinity. The f stands for “floor”.

q will satisfy n=q*d+r.

This function calculates only the quotient.

#fmodObject

call-seq:

n.fmod(d)

Divides n by d, forming a remainder r. r will have the same sign as d. The f stands for “floor”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

The remainder can be negative, so the return value is the absolute value of the remainder.

#gcdObject

#gcdext(b) ⇒ Object

Returns the greatest common divisor of a and b, in addition to s and t, the coefficients satisfying a*s + b*t = g. g is always positive, even if one or both of a and b are negative. s and t are chosen such that abs(s) <= abs(b) and abs(t) <= abs(a).

Since:

  • 0.5.23



1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
# File 'ext/gmpz.c', line 1939

VALUE r_gmpz_gcdext(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val, *s_val, *t_val;
  VALUE res, s, t, ary;
  int free_arg_val = 0;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_get_struct (arg, arg_val);
    mpz_gcdext (res_val, s_val, t_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM (arg));
    free_arg_val = 1;
    mpz_gcdext (res_val, s_val, t_val, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_set_bignum (res_val, arg);
    mpz_gcdext (res_val, s_val, t_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }

  if (free_arg_val)
    mpz_temp_free (arg_val);

  ary = rb_ary_new3 (3, res, s, t);
  return ary;
}

#gcdext2(b) ⇒ Object

Returns the greatest common divisor of a and b, in addition to s, the coefficient satisfying a*s + b*t = g. g is always positive, even if one or both of a and b are negative. s and t are chosen such that abs(s) <= abs(b) and abs(t) <= abs(a).

Since:

  • 0.5.x



1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
# File 'ext/gmpz.c', line 1989

VALUE r_gmpz_gcdext2(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val, *s_val;
  VALUE res, s, ary;
  int free_arg_val = 0;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_get_struct (arg, arg_val);
    mpz_gcdext (res_val, s_val, NULL, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM(arg));
    free_arg_val = 1;
    mpz_gcdext (res_val, s_val, NULL, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_set_bignum (res_val, arg);
    mpz_gcdext (res_val, s_val, NULL, res_val, self_val);
  } else {
    typeerror (ZXB);
  }

  if (free_arg_val)
    mpz_temp_free (arg_val);

  ary = rb_ary_new3 (2, res, s);
  return ary;
}

#hamdist(b) ⇒ Object

If a and b are both >= 0 or both < 0, calculate the hamming distance between a and b. If one operand is >= 0 and the other is less than 0, then return “infinity” (the largest possible ‘mp_bitcnt_t`. positive.



2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
# File 'ext/gmpz.c', line 2696

VALUE r_gmpz_hamdist(VALUE self_val, VALUE b_val)
{
  MP_INT *self, *b;
  mpz_get_struct (self_val, self);
  mpz_get_struct (   b_val,    b);
  if (! GMPZ_P (b_val)) {
    typeerror_as (Z, "b");
  }

  return INT2FIX (mpz_hamdist(self, b));
}

#hashObject

Returns the computed hash value of a. This method first converts a into a String (base 10), then calls String#hash on the result, returning the hash value. a.eql?(b) if and only if b.class == GMP::Z, and a.hash == b.hash.

Since:

  • 0.4.7



2605
2606
2607
2608
2609
2610
# File 'ext/gmpz.c', line 2605

VALUE r_gmpz_hash(VALUE self)
{
  ID to_s_sym = rb_intern("to_s");
  ID hash_sym = rb_intern("hash");
  return rb_funcall(rb_funcall(self, to_s_sym, 0), hash_sym, 0);
}

#initialize_copy(orig) ⇒ Object



724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
# File 'ext/gmpz.c', line 724

static VALUE r_gmpz_initialize_copy(VALUE copy, VALUE orig) {
  MP_INT *orig_z, *copy_z;

  if (copy == orig) return copy;

  if (TYPE(orig) != T_DATA) {
    rb_raise(rb_eTypeError, "wrong argument type");
  }

  mpz_get_struct (orig, orig_z);
  mpz_get_struct (copy, copy_z);
  mpz_set (copy_z, orig_z);

  return copy;
}

#invert(b) ⇒ Object

Returns the inverse of a modulo b. If the inverse exists, the return value is non-zero and the result will be non-negative and less than b. If an inverse doesn’t exist, the result is undefined.

Since:

  • 0.2.11



2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
# File 'ext/gmpz.c', line 2068

VALUE r_gmpz_invert(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_get_struct (arg, arg_val);
    mpz_invert (res_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
    mpz_make_struct_init (res, res_val);
    mpz_invert (res_val, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_invert (res_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }
  return res;
}

#jacobi(b) ⇒ Object

Calculate the Jacobi symbol (a/b). This is defined only for b odd and positive.



2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
# File 'ext/gmpz.c', line 2101

VALUE r_gmpz_jacobi(VALUE self, VALUE b)
{
  MP_INT *self_val, *b_val;
  int res_val;
  mpz_get_struct(self, self_val);
  mpz_get_struct(   b,    b_val);
  if (mpz_sgn(b_val) != 1)
    rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
  if (mpz_even_p(b_val))
    rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
  res_val = mpz_jacobi(self_val, b_val);
  return INT2FIX(res_val);
}

#lastbits_posObject

#lastbits_sgnObject

#lcm(b) ⇒ Object

Returns the least common multiple of a and b. The result is always positive even if one or both of a or b are negative.

Since:

  • 0.2.11



2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
# File 'ext/gmpz.c', line 2034

VALUE r_gmpz_lcm(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_get_struct (arg, arg_val);
    mpz_lcm (res_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_lcm_ui (res_val, self_val, FIX2NUM(arg));
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_lcm (res_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }
  return res;
}

#legendre(p) ⇒ Object

Calculate the Legendre symbol (a/p). This is defined only for p an odd positive prime, and for such p it’s identical to the Jacobi symbol.



2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
# File 'ext/gmpz.c', line 2185

VALUE r_gmpz_legendre(VALUE self, VALUE p)
{
  MP_INT *self_val, *p_val;
  int res_val;
  mpz_get_struct(self, self_val);
  mpz_get_struct(   p,    p_val);
  if (mpz_sgn(p_val) != 1)
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is non-positive.");
  if (mpz_even_p(p_val))
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is even.");
  if (mpz_probab_prime_p(p_val, 5) == 0)
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is composite.");
  res_val = mpz_legendre(self_val, p_val);
  return INT2FIX(res_val);
}

#negObject

call-seq:

a.neg
-a

Returns -a.

#neg!Object

call-seq:

a.neg!

Sets a to -a.

#nextprimeObject Also known as: next_prime

call-seq:

n.nextprime
n.next_prime

Returns the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

#nextprime!Object Also known as: next_prime!

call-seq:

n.nextprime!
n.next_prime!

Sets n to the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

#odd?Boolean

call-seq:

a.odd?

Determines whether a is odd. Returns true or false.

Returns:

  • (Boolean)

#out_raw(stream) ⇒ Object



2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
# File 'ext/gmpz.c', line 2830

VALUE r_gmpz_out_raw(VALUE self, VALUE stream)
{
  MP_INT *self_val;
  FILE *fd;
  mpz_get_struct(self, self_val);
  if (TYPE (stream) != T_FILE) {
    rb_raise (rb_eTypeError, "stream must be an IO.");
  }
  fd = rb_io_stdio_file (RFILE (stream)->fptr);
  return INT2FIX (mpz_out_raw (fd, self_val));
}

#popcountObject

call-seq:

a.popcount

If a >= 0, return the population count of a, which is the number of 1 bits in the binary representation. If a < 0, the number of 1s is infinite, and the return value is INT2FIX(ULONG_MAX), the largest possible unsigned long.

#power?Boolean

call-seq:

p.power?

Returns true if p is a perfect power, i.e., if there exist integers a and b, with b > 1, such that p equals a raised to the power b.

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of integers are accepted, but of course can only be odd perfect powers.

Returns:

  • (Boolean)

#powmod(b, c) ⇒ Object

Returns a raised to b modulo c.

Negative b is supported if an inverse a^-1 mod c exists. If an inverse doesn’t exist then a divide by zero is raised.



1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
# File 'ext/gmpz.c', line 1654

VALUE r_gmpz_powm(VALUE self, VALUE exp, VALUE mod)
{
  MP_INT *self_val, *res_val, *mod_val, *exp_val;
  VALUE res;
  int free_mod_val = 0;

  if (GMPZ_P(mod)) {
    mpz_get_struct(mod, mod_val);
    if (mpz_sgn(mod_val) <= 0) {
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
  } else if (FIXNUM_P(mod)) {
    if (FIX2NUM(mod) <= 0) {
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
    mpz_temp_alloc(mod_val);
    mpz_init_set_ui(mod_val, FIX2NUM(mod));
    free_mod_val = 1;
  } else if (BIGNUM_P(mod)) {
    mpz_temp_from_bignum(mod_val, mod);
    if (mpz_sgn(mod_val) <= 0) {
      mpz_temp_free(mod_val);
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
    free_mod_val = 1;
  } else {
    typeerror_as(ZXB, "modulus");
  }
  mpz_make_struct_init(res, res_val);
  mpz_get_struct(self, self_val);

  if (GMPZ_P(exp)) {
    mpz_get_struct(exp, exp_val);
    if (mpz_sgn(mod_val) < 0) {
      rb_raise(rb_eRangeError, "exponent must be nonnegative");
    }
    mpz_powm(res_val, self_val, exp_val, mod_val);
  } else if (FIXNUM_P(exp)) {
    if (FIX2NUM(exp) < 0)
    {
      if (free_mod_val)
        mpz_temp_free(mod_val);
      rb_raise(rb_eRangeError, "exponent must be nonnegative");
    }
    mpz_powm_ui(res_val, self_val, FIX2NUM(exp), mod_val);
  } else if (BIGNUM_P(exp)) {
    mpz_temp_from_bignum(exp_val, exp);
    mpz_powm(res_val, self_val, exp_val, mod_val);
    mpz_temp_free(exp_val);
  } else {
    if (free_mod_val)
      mpz_temp_free(mod_val);
    typeerror_as(ZXB, "exponent");
  }
  if (free_mod_val)
    mpz_temp_free(mod_val);
  return res;
}

#probab_prime?Boolean

Number Theoretic Functions

Returns:

  • (Boolean)

#remove(f) ⇒ Object

Remove all occurrences of the factor f from n, returning the result as r. t, how many such occurrences were removed, is also returned.



2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
# File 'ext/gmpz.c', line 2208

VALUE r_gmpz_remove(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;
#if __GNU_MP_VERSION>2
  unsigned long removed_val;
#else
  int   removed_val;
#endif
  int free_arg_val = 0;

  mpz_get_struct(self, self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    if (mpz_sgn(arg_val) != 1)
      rb_raise(rb_eRangeError, "argument must be positive");
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) <= 0)
      rb_raise(rb_eRangeError, "argument must be positive");
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    if (mpz_sgn(arg_val) != 1) {
      mpz_temp_free(arg_val);
      rb_raise(rb_eRangeError, "argument must be positive");
    }
  } else {
    typeerror(ZXB);
  }

  mpz_make_struct_init(res, res_val);
  removed_val = mpz_remove(res_val, self_val, arg_val);

  if (free_arg_val)
    mpz_temp_free(arg_val);

  return rb_assoc_new(res, INT2FIX(removed_val));
}

#rootObject

call-seq:

a.root(b)

Returns the truncated integer part of the bth root of a.

#rootremObject

call-seq:

a.rootrem(b)

Returns the truncated integer part of the bth root of a, and the remainder, _a - root**b_.

#scan0(starting_bit) ⇒ Object

Scan a, starting from bit starting_bit, towards more significant bits, until the first 0 bit is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then INT2FIX(ULONG_MAX) is returned. This will happen in scan0 past the end of a negative number.



2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
# File 'ext/gmpz.c', line 2721

VALUE r_gmpz_scan0(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  int bitnr_val;
  mpz_get_struct (self, self_val);
  if (FIXNUM_P (bitnr)) {
    bitnr_val = FIX2INT (bitnr);
  } else {
    typeerror_as (X, "index");
  }
  return INT2FIX (mpz_scan0 (self_val, bitnr_val));
}

#scan1(starting_bit) ⇒ Object

Scan a, starting from bit starting_bit, towards more significant bits, until the first 1 bit is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then INT2FIX(ULONG_MAX) is returned. This will happen in scan1 past the end of a nonnegative number.



2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
# File 'ext/gmpz.c', line 2747

VALUE r_gmpz_scan1(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  int bitnr_val;

  mpz_get_struct (self, self_val);

  if (FIXNUM_P (bitnr)) {
    bitnr_val = FIX2INT (bitnr);
  } else {
    typeerror_as (X, "index");
  }

  return INT2FIX (mpz_scan1 (self_val, bitnr_val));
}

#sgnObject

Returns +1 if a > 0, 0 if a == 0, and -1 if a < 0.



2564
2565
2566
2567
2568
2569
# File 'ext/gmpz.c', line 2564

VALUE r_gmpz_sgn(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);
  return INT2FIX(mpz_sgn(self_val));
}

#sizeObject

Return the size of a measured in number of limbs. If a is zero, the returned value will be zero.

Since:

  • 0.4.19



3031
3032
3033
3034
3035
3036
# File 'ext/gmpz.c', line 3031

VALUE r_gmpz_size(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);
  return INT2FIX(mpz_size(self_val));
}

#size_in_binObject

Return the size of a measured in number of digits in binary. The sign of a is ignored, just the absolute value is used. If a is zero the return value is 1.

Since:

  • 0.2.11



3010
3011
3012
3013
3014
3015
# File 'ext/gmpz.c', line 3010

VALUE r_gmpz_size_in_bin(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct (self, self_val);
  return INT2FIX (mpz_sizeinbase (self_val, 2));
}

#sizeinbaseObject Also known as: size_in_base

#sqrtObject

call-seq:

a.sqrt

Returns the truncated integer part of the square root of a.

#sqrt!Object

call-seq:

a.sqrt!

Sets a to the truncated integer part of its square root.

#sqrtremObject

#square?Boolean

call-seq:

p.square?

Returns true if p is a perfect square, i.e., if the square root of p is an integer. Under this definition both 0 and 1 are considered to be perfect squares.

Returns:

  • (Boolean)

#sub!(b) ⇒ Object

Subtracts b from a in-place, setting a to the difference. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# File 'ext/gmpz.c', line 1058

VALUE r_gmpz_sub_self(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
    mpz_sub (self_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) > 0)
      mpz_sub_ui (self_val, self_val, FIX2NUM(arg));
    else
      mpz_add_ui (self_val, self_val, -FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    mpz_sub (self_val, self_val, arg_val);
    mpz_temp_free (arg_val);
  } else {
    typeerror (ZXB);
  }
  return Qnil;
}

#submul!(b, c) ⇒ Object

Sets a to a minus b times c. b and c must each be an instance of one of

  • GMP::Z

  • Fixnum

  • Bignum

Since:

  • 0.5.23



1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
# File 'ext/gmpz.c', line 1191

static VALUE r_gmpz_submul_self(VALUE self, VALUE b, VALUE c)
{
  MP_INT *self_val, *b_val, *c_val;
  int free_b_val = 0;

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
  } else if (FIXNUM_P(b)) {
    mpz_temp_alloc(b_val);
    mpz_init_set_si(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "addend");
  }
  mpz_get_struct(self, self_val);

  if (GMPZ_P (c)) {
    mpz_get_struct (c, c_val);
    mpz_submul (self_val, b_val, c_val);
  } else if (TYPE (c) == T_FIXNUM) {
    if (FIX2NUM (c) < 0)
    {
      if (free_b_val) { mpz_temp_free (b_val); }
      rb_raise (rb_eRangeError, "multiplicand (Fixnum) must be nonnegative");
    }
    mpz_submul_ui (self_val, b_val, FIX2NUM (c));
  } else if (BIGNUM_P (c)) {
    mpz_temp_from_bignum (c_val, c);
    mpz_submul (self_val, b_val, c_val);
    mpz_temp_free (c_val);
  } else {
    if (free_b_val)
      mpz_temp_free (b_val);
  //  rb_raise (rb_eTypeError, "base must be a Fixnum between 2 and 62, not a %s.", rb_class2name (rb_class_of (c)));
    typeerror_as (ZXB, "multiplicand");
  }
  if (free_b_val)
    mpz_temp_free (b_val);
  return self;
}

#swap(b) ⇒ Object

Efficiently swaps the contents of a with b. b must be an instance of GMP::Z.

Returns:

  • nil



790
791
792
793
794
795
796
797
798
799
800
# File 'ext/gmpz.c', line 790

VALUE r_gmpz_swap(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  if (!GMPZ_P(arg)) {
    rb_raise(rb_eTypeError, "Can't swap GMP::Z with object of other class");
  }
  mpz_get_struct(self, self_val);
  mpz_get_struct(arg, arg_val);
  mpz_swap(self_val,arg_val);
  return Qnil;
}

#tdivObject

call-seq:

n.tdiv(d)

Divides n by d, forming a quotient q. tdiv rounds q towards zero. The t stands for “truncate”.

q will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the quotient.

#tmodObject

call-seq:

n.tmod(d)

Divides n by d, forming a remainder r. r will have the same sign as n. The t stands for “truncate”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

The remainder can be negative, so the return value is the absolute value of the remainder.

#to_dObject

TODO:

Implement mpz_fits_slong_p

Returns a as a Float if a fits in a Float.

Otherwise returns the least significant part of a, with the same sign as a.

If a is too big to fit in a Float, the returned result is probably not very useful. To find out if the value will fit, use the function mpz_fits_slong_p (Unimplemented).



857
858
859
860
861
862
863
# File 'ext/gmpz.c', line 857

VALUE r_gmpz_to_d(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);

  return rb_float_new(mpz_get_d(self_val));
}

#to_iObject

TODO:

Implement mpz_fits_slong_p

Returns a as an Fixnum if a fits into a Fixnum.

Otherwise returns the least significant part of a, with the same sign as a.

If a is too big to fit in a Fixnum, the returned result is probably not very useful. To find out if the value will fit, use the function mpz_fits_slong_p (Unimplemented).



821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
# File 'ext/gmpz.c', line 821

VALUE r_gmpz_to_i(VALUE self)
{
  MP_INT *self_val;
  char *str;
  VALUE res;

  mpz_get_struct (self, self_val);
  if (mpz_fits_slong_p (self_val)) {
#ifdef RUBY_ENGINE_JRUBY
    /* JRuby has this as INT2FIX which is no good. Patch. */
    return FIXABLE (mpz_get_si (self_val)) ? LONG2FIX (mpz_get_si (self_val)) : rb_ll2inum (mpz_get_si (self_val));
#else
    return rb_int2inum (mpz_get_si (self_val));
#endif
  }

  str = mpz_get_str (NULL, 0, self_val);
  res = rb_cstr2inum (str, 10);
  free (str);
  return res;
}

#to_s(*args) ⇒ Object Also known as: inspect

call-seq:

a.to_s(base = 10)
a.to_s(:bin)
a.to_s(:oct)
a.to_s(:dec)
a.to_s(:hex)

Returns a, as a String. If base is not provided, then the decimal representation will be returned.

From the GMP Manual:

Convert a to a string of digits in base base. The base argument may vary from 2 to 62 or from -2 to -36.

For base in the range 2..36, digits and lower-case letters are used; for -2..-36, digits and upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in that significance order) are used.



887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
# File 'ext/gmpz.c', line 887

VALUE r_gmpz_to_s(int argc, VALUE *argv, VALUE self_val)
{
  MP_INT *self;
  char *str;
  VALUE res;
  VALUE base_val;
  unsigned int base;

  rb_scan_args(argc, argv, "01", &base_val);
  if (NIL_P(base_val)) { base = 10; }                /* default value */
  else { base = get_base(base_val); }

  Data_Get_Struct(self_val, MP_INT, self);
  str = mpz_get_str(NULL, base, self);
  res = rb_str_new2(str);
  free (str);

  return res;
}

#tshrObject

call-seq:

n.tshr(d)

Divides n by 2^d, forming a quotient q. tshr rounds q towards zero. The t stands for “truncate”.

q will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the quotient.

#|Object

call-seq:

a | b

Returns a bitwise inclusive-or b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum