Class: GMP::Z

Inherits:
Integer
  • Object
show all
Defined in:
ext/gmpz.c,
ext/gmp.c,
ext/gmpz.c

Overview

GMP Multiple Precision Integer.

Instances of this class can store variables of the type mpz_t. This class also contains many methods that act as the functions for mpz_t variables, as well as a few methods that attempt to make this library more Ruby-ish.

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(*args) ⇒ Object



657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# File 'ext/gmpz.c', line 657

VALUE r_gmpz_initialize(int argc, VALUE *argv, VALUE self)
{
  MP_INT *self_val;
  int base = 0;

  // Set up the base if 2 arguments are passed
  if (argc == 2) { // only ok if String, Fixnum
    if (STRING_P(argv[0])) {  // first arg must be a String
      if (FIXNUM_P(argv[1])) {  //  second arg must be a Fixnum
        base = FIX2INT(argv[1]);
        if ( base != 0 && ( base < 2 || base > 62) )
          rb_raise (rb_eRangeError, "base must be either 0 or between 2 and 62");
      } else {
        rb_raise (rb_eTypeError, "base must be a Fixnum between 2 and 62, not a %s.", rb_class2name (rb_class_of (argv[1])));
      }
    } else {
      rb_raise(
        rb_eTypeError,
        "GMP::Z.new() must be passed a String as the 1st argument (not a %s), if a base is passed as the 2nd argument.",
        rb_class2name (rb_class_of (argv[0]))
      );
    }
  }

  if (argc != 0) {
    mpz_get_struct (self,self_val);
    mpz_set_value (self_val, argv[0], base);
  }
  return Qnil;
}

Class Method Details

.2facObject

call-seq:

GMP::Z.send(:"2fac", n)
GMP::Z.double_fac(n)

Returns n!!, the double factorial of n.

Examples:

  • GMP::Z.double_fac( 0) #=> 1

  • GMP::Z.double_fac( 1) #=> 1

  • GMP::Z.double_fac( 2) #=> 2

  • GMP::Z.double_fac( 3) #=> 3

  • GMP::Z.double_fac( 4) #=> 8

  • GMP::Z.double_fac( 5) #=> 15

  • GMP::Z.double_fac( 6) #=> 48

  • GMP::Z.double_fac( 7) #=> 105

  • GMP::Z.double_fac( 8) #=> 384

  • GMP::Z.double_fac( 9) #=> 945

  • GMP::Z.double_fac( 10) #=> 3840

  • GMP::Z.double_fac(100)

    #=> 34243224702511976248246432895208185975118675053719198827915654463488000000000000
    

.absObject

call-seq:

a.abs

Returns the absolute value of a.

.addObject

call-seq:

GMP::Z.add(rop, op1, op2)

.addmulObject

.cdiv_q_2expObject

.cdiv_r_2expObject

.comObject

call-seq:

a.com

Returns the one’s complement of a.

.congruent?Boolean

Returns:

  • (Boolean)

.divexactObject

Functional Mappings

.divisible?Boolean

Returns:

  • (Boolean)

.double_facObject

.facObject

call-seq:

GMP::Z.fac(n)

Returns n!, the factorial of n.

Examples:

  • GMP::Z.fac(0) #=> 1

  • GMP::Z.fac(1) #=> 1

  • GMP::Z.fac(2) #=> 2

  • GMP::Z.fac(3) #=> 6

  • GMP::Z.fac(4) #=> 24

.fdiv_q_2expObject

.fdiv_r_2expObject

.fibObject

call-seq:

GMP::Z.fib(n)

Returns F[n], the nth Fibonacci number.

Examples:

  • GMP::Z.fib(1) #=> 1

  • GMP::Z.fib(2) #=> 1

  • GMP::Z.fib(3) #=> 2

  • GMP::Z.fib(4) #=> 3

  • GMP::Z.fib(5) #=> 5

  • GMP::Z.fib(6) #=> 8

  • GMP::Z.fib(7) #=> 13

.GMP::Z.import(str, order = -1) ⇒ Object

Return a GMP::Z from a String, ‘str`.

‘order` can be 1 for most significant word first or -1 for least significant first.

There is no sign taken from the data, the result will simply be a positive integer. An application can handle any sign itself, and apply it for instance with ‘GMP::Z#neg`.



2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
# File 'ext/gmpz.c', line 2802

VALUE r_gmpzsg_import(int argc, VALUE *argv, VALUE klass)
{
  MP_INT *res;
  VALUE string_val, order_val, res_val;
  char *string;
  int order, endian;
  size_t nails;
  (void)klass;

  endian = 0;
  nails = 0;

  rb_scan_args (argc, argv, "11", &string_val, &order_val);

  if (NIL_P (order_val))
    order = -1;
  else if (! FIXNUM_P (order_val))
    typeerror_as (X, "order");
  else
    order = FIX2INT (order_val);

  mpz_make_struct(res_val, res);
  mpz_init(res);

  string = StringValuePtr (string_val);

  mpz_import (res, RSTRING_LEN(string_val), order, sizeof(char), endian, nails, string);
  return res_val;
}

.GMP::Z.inp_raw(a, stream) ⇒ Object

Input from IO object stream in the format written by ‘GMP::Z#out_raw`, and put the result in a. Return the number of bytes read, or if an error occurred, return 0.



2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
# File 'ext/gmpz.c', line 2770

VALUE r_gmpzsg_inp_raw(VALUE klass, VALUE a_val, VALUE stream_val)
{
  MP_INT *a;
  FILE *stream;
  (void)klass;

  if (! GMPZ_P(a_val))
    typeerror_as(Z, "a");

  if (TYPE (stream_val) != T_FILE)
    rb_raise (rb_eTypeError, "stream must be an IO.");

  mpz_get_struct(a_val, a);
  stream = rb_io_stdio_file (RFILE (stream_val)->fptr);
  return INT2FIX (mpz_inp_raw (a, stream));
}

.GMP::Z.jacobi(a, b) ⇒ Object

Calculate the Jacobi symbol (a/b). This is defined only for b odd and positive.



2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
# File 'ext/gmpz.c', line 2063

VALUE r_gmpzsg_jacobi(VALUE klass, VALUE a, VALUE b)
{
  MP_INT *a_val, *b_val;
  int res_val;
  int free_a_val = 0;
  int free_b_val = 0;
  (void)klass;

  if (GMPZ_P(a)) {
    mpz_get_struct(a, a_val);
  } else if (FIXNUM_P(a)) {
    mpz_temp_alloc(a_val);
    mpz_init_set_ui(a_val, FIX2NUM(a));
    free_a_val = 1;
  } else if (BIGNUM_P(a)) {
    mpz_temp_from_bignum(a_val, a);
    free_a_val = 1;
  } else {
    typeerror_as(ZXB, "a");
  }

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
    if (mpz_sgn(b_val) != 1)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    if (mpz_even_p(b_val))
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
  } else if (FIXNUM_P(b)) {
    if (FIX2NUM(b) <= 0)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    if (FIX2NUM(b) % 2 == 0)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
    mpz_temp_alloc(b_val);
    mpz_init_set_ui(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    if (mpz_sgn(b_val) != 1) {
      mpz_temp_free(b_val);
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    }
    if (mpz_even_p(b_val)) {
      mpz_temp_free(b_val);
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
    }
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "b");
  }

  res_val = mpz_jacobi(a_val, b_val);
  if (free_a_val) { mpz_temp_free(a_val); }
  if (free_b_val) { mpz_temp_free(b_val); }
  return INT2FIX(res_val);
}

.lcmObject

Functional Mappings

.lucnumObject

.mfacObject

call-seq:

GMP::Z.mfac(n)

Returns n!^(m), the m-multi-factorial of n.

Examples:

  • GMP::Z.mfac(0, 3) #=> 1

  • GMP::Z.mfac(1, 3) #=> 1

  • GMP::Z.mfac(2, 3) #=> 2

  • GMP::Z.mfac(3, 3) #=> 3

  • GMP::Z.mfac(4, 3) #=> 4

  • GMP::Z.mfac(5, 3) #=> 10

  • GMP::Z.mfac(6, 3) #=> 18

  • GMP::Z.mfac(7, 3) #=> 28

  • GMP::Z.mfac(8, 3) #=> 80

  • GMP::Z.mfac(9, 3) #=> 162

  • GMP::Z.mfac(10, 3) #=> 280

  • GMP::Z.mfac(11, 3) #=> 880

  • GMP::Z.mfac(12, 3) #=> 1944

.mulObject

.mul_2expObject

.negObject

call-seq:

a.neg
-a

Returns -a.

.newObject

Initializing, Assigning Integers

.nextprimeObject

call-seq:

n.nextprime
n.next_prime

Returns the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

.powObject

call-seq:

GMP::Z.pow(a, b)

Returns a raised to b. The case 0^0 yields 1.

.primorialObject

call-seq:

GMP::Z.primorial(n)

Returns the primorial n.

Examples:

  • GMP::Z.primorial(0) #=> 1

  • GMP::Z.primorial(1) #=> 1

  • GMP::Z.primorial(2) #=> 2

  • GMP::Z.primorial(3) #=> 6

  • GMP::Z.primorial(4) #=> 6

  • GMP::Z.primorial(5) #=> 30

  • GMP::Z.primorial(6) #=> 30

  • GMP::Z.primorial(7) #=> 210

.sqrtObject

call-seq:

a.sqrt

Returns the truncated integer part of the square root of a.

.subObject

.submulObject

.tdiv_q_2expObject

.tdiv_r_2expObject

Instance Method Details

#%Object

#&Object

call-seq:

a & b

Returns a bitwise-and b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum

#*(b) ⇒ Object

Multiplies a with b. a must be an instance of one of

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
# File 'ext/gmpz.c', line 1081

VALUE r_gmpz_mul(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_get_struct(arg,arg_val);
    mpz_mul(res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_mul_si(res_val, self_val, FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    return r_gmpq_mul(arg, self);
  } else if (GMPF_P(arg)) {
#ifndef MPFR
    return r_gmpf_mul(arg, self);
#else
    return rb_funcall(arg, rb_intern("*"), 1, self);
#endif
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_set_bignum(res_val, arg);
    mpz_mul(res_val, res_val, self_val);
  } else {
    typeerror(ZQFXB);
  }
  return res;
}

#**Object

call-seq:

a ** b

Returns a raised to b. The case 0^0 yields 1.

#+(b) ⇒ Object

Adds a to b. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
# File 'ext/gmpz.c', line 911

VALUE r_gmpz_add(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    mpz_make_struct_init(res, res_val);
    mpz_add(res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    if (FIX2NUM(arg) > 0)
      mpz_add_ui(res_val, self_val, FIX2NUM(arg));
    else
      mpz_sub_ui(res_val, self_val, -FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    return r_gmpq_add(arg, self);
  } else if (GMPF_P(arg)) {
#ifndef MPFR
    return r_gmpf_add(arg, self);
#else
    return rb_funcall(arg, rb_intern("+"), 1, self);
#endif
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_init(res_val);
    mpz_set_bignum(res_val, arg);
    mpz_add(res_val, res_val, self_val);
  } else {
    typeerror(ZQFXB);
  }
  return res;
}

#-(b) ⇒ Object

Subtracts b from a. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
# File 'ext/gmpz.c', line 993

VALUE r_gmpz_sub(VALUE self, VALUE arg)
{
  MP_RAT *res_val_q, *arg_val_q;
  MP_INT *self_val, *arg_val, *res_val;
  MP_FLOAT *arg_val_f, *res_val_f;
  VALUE res;
  unsigned long prec;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_get_struct(arg,arg_val);
    mpz_sub (res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    if (FIX2NUM(arg) > 0)
      mpz_sub_ui (res_val, self_val, FIX2NUM(arg));
    else
      mpz_add_ui (res_val, self_val, -FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    mpq_make_struct_init(res, res_val_q);
    mpq_get_struct(arg,arg_val_q);
    mpz_set (mpq_denref(res_val_q), mpq_denref(arg_val_q));
    mpz_mul (mpq_numref(res_val_q), mpq_denref(arg_val_q), self_val);
    mpz_sub (mpq_numref(res_val_q), mpq_numref(res_val_q), mpq_numref(arg_val_q));
  } else if (GMPF_P(arg)) {
    mpf_get_struct_prec (arg, arg_val_f, prec);
    mpf_make_struct_init(res, res_val_f, prec);
    mpf_set_z (res_val_f, self_val);
    mpf_sub (res_val_f, res_val_f, arg_val_f);
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_sub (res_val, self_val, res_val);
  } else {
    typeerror (ZQFXB);
  }
  return res;
}

#-@Object

#/Object

Integer Division

#<Object

call-seq:

a < b

Returns whether a is strictly less than b.

#<<Object

call-seq:

a << n

Returns a times 2 raised to n. This operation can also be defined as a left shift by n bits.

#<=Object

call-seq:

a <= b

Returns whether a is less than or equal to b.

#<=>(b) ⇒ Object

Returns negative if a is less than b.

Returns 0 if a is equal to b.

Returns positive if a is greater than b.



2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
# File 'ext/gmpz.c', line 2382

VALUE r_gmpz_cmp(VALUE self, VALUE arg)
{
  MP_INT *self_val;
  int res;
  mpz_get_struct(self,self_val);
  res = mpz_cmp_value(self_val, arg);
  if (res > 0)
    return INT2FIX(1);
  else if (res == 0)
    return INT2FIX(0);
  else
    return INT2FIX(-1);
}

#==Object

#>Object

call-seq:

a > b

Returns whether a is strictly greater than b.

#>=Object

call-seq:

a >= b

Returns whether a is greater than or equal to b.

#>>Object

unsorted

#[](index) ⇒ Object

Gets the bit at index, returned as either true or false.



2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
# File 'ext/gmpz.c', line 2719

VALUE r_gmpz_getbit(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  unsigned long bitnr_val;
  mpz_get_struct(self, self_val);
  if (FIXNUM_P(bitnr)) {
    bitnr_val = FIX2NUM (bitnr);
  } else {
    typeerror_as(X, "index");
  }
  return mpz_tstbit(self_val, bitnr_val)?Qtrue:Qfalse;
}

#[]=(index) ⇒ Object

Sets the bit at index to x.



2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
# File 'ext/gmpz.c', line 2690

VALUE r_gmpz_setbit(VALUE self, VALUE bitnr, VALUE set_to)
{
  MP_INT *self_val;
  unsigned long bitnr_val;

  mpz_get_struct (self, self_val);

  if (FIXNUM_P (bitnr)) {
    if (FIX2NUM (bitnr) < 0) {
      rb_raise(rb_eRangeError, "index must be nonnegative");
    }
    bitnr_val = FIX2NUM (bitnr);
  } else {
    typeerror_as (X, "index");
  }
  if (RTEST (set_to)) {
    mpz_setbit (self_val, bitnr_val);
  } else {
    mpz_clrbit (self_val, bitnr_val);
  }
  return Qnil;
}

#^Object

call-seq:

a ^ b

Returns a bitwise exclusive-or b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum

#absObject

call-seq:

a.abs

Returns the absolute value of a.

#abs!Object

call-seq:

a.abs!

Sets a to its absolute value.

#add!(_b_) ⇒ Object

Adds a to b in-place, setting a to the sum. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
# File 'ext/gmpz.c', line 958

VALUE r_gmpz_add_self(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    mpz_add(self_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) > 0)
      mpz_add_ui(self_val, self_val, FIX2NUM(arg));
    else
      mpz_sub_ui(self_val, self_val, -FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    mpz_add(self_val, self_val, arg_val);
    mpz_temp_free(arg_val);
  } else {
    typeerror(ZXB);
  }
  return Qnil;
}

#addmul!(b, c) ⇒ Object

Sets a to a plus b times c. b and c must each be an instance of one of

  • GMP::Z

  • Fixnum

  • Bignum

Since:

  • 0.4.19



1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
# File 'ext/gmpz.c', line 1124

static VALUE r_gmpz_addmul_self(VALUE self, VALUE b, VALUE c)
{
  MP_INT *self_val, *b_val, *c_val;
  int free_b_val = 0;

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
  } else if (FIXNUM_P(b)) {
    mpz_temp_alloc(b_val);
    mpz_init_set_si(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "addend");
  }
  mpz_get_struct(self, self_val);

  if (GMPZ_P(c)) {
    mpz_get_struct(c, c_val);
    mpz_addmul(self_val, b_val, c_val);
  } else if (FIXNUM_P(c)) {
    if (FIX2NUM(c) < 0)
    {
      if (free_b_val) { mpz_temp_free(b_val); }
      rb_raise(rb_eRangeError, "multiplicand (Fixnum) must be nonnegative");
    }
    mpz_addmul_ui(self_val, b_val, FIX2NUM(c));
  } else if (BIGNUM_P(c)) {
    mpz_temp_from_bignum(c_val, c);
    mpz_addmul(self_val, b_val, c_val);
    mpz_temp_free(c_val);
  } else {
    if (free_b_val)
      mpz_temp_free(b_val);
    typeerror_as(ZXB, "multiplicand");
  }
  if (free_b_val)
    mpz_temp_free(b_val);
  return self;
}

#cdivObject

call-seq:

n.cdiv(d)

Divide n by d, forming a quotient q. cdiv rounds q up towards _+infinity_. The c stands for “ceil”.

q will satisfy n=q*d+r.

This function calculates only the quotient.

#cmodObject

call-seq:

n.cmod(d)

Divides n by d, forming a remainder r. r will have the opposite sign of d. The c stands for “ceil”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

#cmpabsObject

#coerce(arg) ⇒ Object



23
24
25
26
# File 'ext/gmp.c', line 23

static VALUE r_gmpz_coerce(VALUE self, VALUE arg)
{
  return rb_assoc_new(r_gmpzsg_new(1, &arg, cGMP_Z), self);
}

#comObject

call-seq:

a.com

Returns the one’s complement of a.

#com!Object

call-seq:

a.com!

Sets a to its one’s complement.

#congruent?(c, d) ⇒ Boolean

Returns true if n is congruent to c modulo d. c and d can be an instance any of the following:

  • GMP::Z

  • Fixnum

  • Bignum

Returns:

  • (Boolean)

Since:

  • 0.6.19



1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
# File 'ext/gmpz.c', line 1541

static VALUE r_gmpz_congruent(VALUE self_val, VALUE c_val, VALUE d_val)
{
  MP_INT *self, *c, *d;
  int res, free_c, free_d;
  mpz_get_struct (self_val, self);
  free_c = free_d = 0;

  if (FIXNUM_P (c_val) && FIX2NUM (c_val) > 0 &&
      FIXNUM_P (d_val) && FIX2NUM (d_val) > 0) {
    res = mpz_congruent_ui_p (self, FIX2NUM (c_val), FIX2NUM (d_val));
  } else {
    if (FIXNUM_P (c_val)) {
      mpz_make_struct_init (c_val, c);
      mpz_init_set_si (c, FIX2NUM (c_val));
    } else if (BIGNUM_P (c_val)) {
      mpz_temp_from_bignum (c, c_val);
      free_c = 1;
    } else if (GMPZ_P (c_val)) {
      mpz_get_struct (c_val, c);
    } else {
      typeerror_as (ZXB, "c");
    }

    if (FIXNUM_P (d_val)) {
      mpz_make_struct_init (d_val, d);
      mpz_init_set_si (d, FIX2NUM (d_val));
    } else if (BIGNUM_P (d_val)) {
      mpz_temp_from_bignum (d, d_val);
      free_d = 1;
    } else if (GMPZ_P (d_val)) {
      mpz_get_struct (d_val, d);
    } else {
      if (free_c) { mpz_temp_free (c); }
      typeerror_as (ZXB, "d");
    }

    res = mpz_congruent_p (self, c, d);
    if (free_c) { mpz_temp_free (c); }
    if (free_d) { mpz_temp_free (d); }
  }
  return (res != 0) ? Qtrue : Qfalse;
}

#divisible?(b) ⇒ Boolean

Returns true if a is divisible by b. b can be an instance any of the following:

  • GMP::Z

  • Fixnum

  • Bignum

Returns:

  • (Boolean)

Since:

  • 0.5.23



1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
# File 'ext/gmpz.c', line 1500

static VALUE r_gmpz_divisible(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  int res;
  mpz_get_struct (self, self_val);

  if (FIXNUM_P (arg) && FIX2NUM (arg) > 0) {
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
    res = mpz_divisible_ui_p (self_val, FIX2NUM (arg));
    mpz_temp_free(arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_temp_alloc(arg_val);
    mpz_make_struct_init (arg, arg_val);
    mpz_init_set_si(arg_val, FIX2NUM(arg));
    res = mpz_divisible_p (self_val, arg_val);
    mpz_temp_free(arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    res = mpz_divisible_p (self_val, arg_val);
    mpz_temp_free(arg_val);
  } else if (GMPZ_P (arg)) {
    mpz_get_struct(arg, arg_val);
    res = mpz_divisible_p (self_val, arg_val);
  } else {
    typeerror_as (ZXB, "argument");
  }
  return (res != 0) ? Qtrue : Qfalse;
}

#eql?(b) ⇒ Boolean

Returns true if a is equal to b. a and b must then be equal in cardinality, and both be instances of GMP::Z. Otherwise, returns false. a.eql?(b) if and only if b.class == GMP::Z, and a.hash == b.hash.

Returns:

  • (Boolean)

Since:

  • 0.4.7



2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
# File 'ext/gmpz.c', line 2502

VALUE r_gmpz_eql(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  mpz_get_struct(self,self_val);
  
  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
    return (mpz_cmp (self_val, arg_val) == 0) ? Qtrue : Qfalse;
  }
  else {
    return Qfalse;
  }
}

#even?Boolean

call-seq:

a.even?

Determines whether a is even. Returns true or false.

Returns:

  • (Boolean)

#export(order = -1) ⇒ Object

Return a String with word data from a.

‘order` can be 1 for most significant word first or -1 for least significant first.

If ‘a` is non-zero then the most significant word produced will be non-zero. `GMP::Z(0).export` returns `“”`.

The sign of a is ignored, just the absolute value is exported. An application can use ‘GMP::Z#sgn` to get the sign and handle it as desired.



2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
# File 'ext/gmpz.c', line 2847

VALUE r_gmpz_export(int argc, VALUE *argv, VALUE self_val)
{
  MP_INT *self;
  VALUE order_val, res;
  int order, endian;
  size_t countp, nails;
  char *string;

  endian = 0;
  nails = 0;
  mpz_get_struct(self_val, self);

  rb_scan_args (argc, argv, "01", &order_val);

  if (NIL_P (order_val))
    order = -1;
  else if (! FIXNUM_P (order_val))
    typeerror_as (X, "order");
  else
    order = FIX2INT (order_val);

  string = mpz_export (NULL, &countp, order, sizeof(char), endian, nails, self);
  res = rb_str_new (string, countp);
  free (string);

  return res;
}

#fdivObject

call-seq:

n.fdiv(d)

Divide n by d, forming a quotient q. fdiv rounds q down towards -infinity. The f stands for “floor”.

q will satisfy n=q*d+r.

This function calculates only the quotient.

#fmodObject

call-seq:

n.fmod(d)

Divides n by d, forming a remainder r. r will have the same sign as d. The f stands for “floor”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

The remainder can be negative, so the return value is the absolute value of the remainder.

#gcdObject

#gcdext(b) ⇒ Object

Returns the greatest common divisor of a and b, in addition to s and t, the coefficients satisfying a*s + b*t = g. g is always positive, even if one or both of a and b are negative. s and t are chosen such that abs(s) <= abs(b) and abs(t) <= abs(a).

Since:

  • 0.5.23



1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
# File 'ext/gmpz.c', line 1880

VALUE r_gmpz_gcdext(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val, *s_val, *t_val;
  VALUE res, s, t, ary;
  int free_arg_val = 0;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_get_struct (arg, arg_val);
    mpz_gcdext (res_val, s_val, t_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM(arg));
    free_arg_val = 1;
    mpz_gcdext (res_val, s_val, t_val, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_set_bignum (res_val, arg);
    mpz_gcdext (res_val, s_val, t_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }

  if (free_arg_val)
    mpz_temp_free (arg_val);

  ary = rb_ary_new3 (3, res, s, t);
  return ary;
}

#gcdext2(b) ⇒ Object

Returns the greatest common divisor of a and b, in addition to s, the coefficient satisfying a*s + b*t = g. g is always positive, even if one or both of a and b are negative. s and t are chosen such that abs(s) <= abs(b) and abs(t) <= abs(a).

Since:

  • 0.5.x



1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
# File 'ext/gmpz.c', line 1930

VALUE r_gmpz_gcdext2(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val, *s_val;
  VALUE res, s, ary;
  int free_arg_val = 0;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_get_struct (arg, arg_val);
    mpz_gcdext (res_val, s_val, NULL, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM(arg));
    free_arg_val = 1;
    mpz_gcdext (res_val, s_val, NULL, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_set_bignum (res_val, arg);
    mpz_gcdext (res_val, s_val, NULL, res_val, self_val);
  } else {
    typeerror (ZXB);
  }

  if (free_arg_val)
    mpz_temp_free (arg_val);

  ary = rb_ary_new3 (2, res, s);
  return ary;
}

#hamdist(b) ⇒ Object

If a and b are both >= 0 or both < 0, calculate the hamming distance between a and b. If one operand is >= 0 and the other is less than 0, then return “infinity” (the largest possible ‘mp_bitcnt_t`. positive.



2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
# File 'ext/gmpz.c', line 2617

VALUE r_gmpz_hamdist(VALUE self_val, VALUE b_val)
{
  MP_INT *self, *b;
  mpz_get_struct (self_val, self);
  mpz_get_struct (   b_val,    b);
  if (! GMPZ_P (b_val)) {
    typeerror_as (Z, "b");
  }

  return INT2FIX (mpz_hamdist(self, b));
}

#hashObject

Returns the computed hash value of a. This method first converts a into a String (base 10), then calls String#hash on the result, returning the hash value. a.eql?(b) if and only if b.class == GMP::Z, and a.hash == b.hash.

Since:

  • 0.4.7



2526
2527
2528
2529
2530
2531
# File 'ext/gmpz.c', line 2526

VALUE r_gmpz_hash(VALUE self)
{
  ID to_s_sym = rb_intern("to_s");
  ID hash_sym = rb_intern("hash");
  return rb_funcall(rb_funcall(self, to_s_sym, 0), hash_sym, 0);
}

#initialize_copy(orig) ⇒ Object



688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# File 'ext/gmpz.c', line 688

static VALUE r_gmpz_initialize_copy(VALUE copy, VALUE orig) {
  MP_INT *orig_z, *copy_z;

  if (copy == orig) return copy;

  if (TYPE(orig) != T_DATA) {
    rb_raise(rb_eTypeError, "wrong argument type");
  }

  mpz_get_struct (orig, orig_z);
  mpz_get_struct (copy, copy_z);
  mpz_set (copy_z, orig_z);

  return copy;
}

#invert(b) ⇒ Object

Returns the inverse of a modulo b. If the inverse exists, the return value is non-zero and the result will be non-negative and less than b. If an inverse doesn’t exist, the result is undefined.

Since:

  • 0.2.11



2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
# File 'ext/gmpz.c', line 2009

VALUE r_gmpz_invert(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_get_struct (arg, arg_val);
    mpz_invert (res_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
    mpz_make_struct_init (res, res_val);
    mpz_invert (res_val, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_invert (res_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }
  return res;
}

#jacobi(b) ⇒ Object

Calculate the Jacobi symbol (a/b). This is defined only for b odd and positive.



2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
# File 'ext/gmpz.c', line 2042

VALUE r_gmpz_jacobi(VALUE self, VALUE b)
{
  MP_INT *self_val, *b_val;
  int res_val;
  mpz_get_struct(self, self_val);
  mpz_get_struct(   b,    b_val);
  if (mpz_sgn(b_val) != 1)
    rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
  if (mpz_even_p(b_val))
    rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
  res_val = mpz_jacobi(self_val, b_val);
  return INT2FIX(res_val);
}

#lastbits_posObject

#lastbits_sgnObject

#lcm(b) ⇒ Object

Returns the least common multiple of a and b. The result is always positive even if one or both of a or b are negative.

Since:

  • 0.2.11



1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
# File 'ext/gmpz.c', line 1975

VALUE r_gmpz_lcm(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_get_struct (arg, arg_val);
    mpz_lcm (res_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_lcm_ui (res_val, self_val, FIX2NUM(arg));
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_lcm (res_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }
  return res;
}

#legendre(p) ⇒ Object

Calculate the Legendre symbol (a/p). This is defined only for p an odd positive prime, and for such p it’s identical to the Jacobi symbol.



2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
# File 'ext/gmpz.c', line 2126

VALUE r_gmpz_legendre(VALUE self, VALUE p)
{
  MP_INT *self_val, *p_val;
  int res_val;
  mpz_get_struct(self, self_val);
  mpz_get_struct(   p,    p_val);
  if (mpz_sgn(p_val) != 1)
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is non-positive.");
  if (mpz_even_p(p_val))
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is even.");
  if (mpz_probab_prime_p(p_val, 5) == 0)
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is composite.");
  res_val = mpz_legendre(self_val, p_val);
  return INT2FIX(res_val);
}

#negObject

call-seq:

a.neg
-a

Returns -a.

#neg!Object

call-seq:

a.neg!

Sets a to -a.

#nextprimeObject Also known as: next_prime

call-seq:

n.nextprime
n.next_prime

Returns the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

#nextprime!Object Also known as: next_prime!

call-seq:

n.nextprime!
n.next_prime!

Sets n to the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

#odd?Boolean

call-seq:

a.odd?

Determines whether a is odd. Returns true or false.

Returns:

  • (Boolean)

#out_raw(stream) ⇒ Object

Output a on IO object stream, in raw binary format. The integer is written in a portable format, with 4 bytes of size information, and that many bytes of limbs. Both the size and the limbs are written in decreasing significance order (i.e., in big-endian).

The output can be read with ‘GMP::Z.inp_raw`.

Return the number of bytes written, or if an error occurred, return 0.



2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
# File 'ext/gmpz.c', line 2750

VALUE r_gmpz_out_raw(VALUE self, VALUE stream)
{
  MP_INT *self_val;
  FILE *fd;
  mpz_get_struct(self, self_val);
  if (TYPE (stream) != T_FILE) {
    rb_raise (rb_eTypeError, "stream must be an IO.");
  }
  fd = rb_io_stdio_file (RFILE (stream)->fptr);
  return INT2FIX (mpz_out_raw (fd, self_val));
}

#popcountObject

call-seq:

a.popcount

If a >= 0, return the population count of a, which is the number of 1 bits in the binary representation. If a < 0, the number of 1s is infinite, and the return value is INT2FIX(ULONG_MAX), the largest possible unsigned long.

#power?Boolean

call-seq:

p.power?

Returns true if p is a perfect power, i.e., if there exist integers a and b, with b > 1, such that p equals a raised to the power b.

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of integers are accepted, but of course can only be odd perfect powers.

Returns:

  • (Boolean)

#powmod(b, c) ⇒ Object

Returns a raised to b modulo c.

Negative b is supported if an inverse a^-1 mod c exists. If an inverse doesn’t exist then a divide by zero is raised.



1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
# File 'ext/gmpz.c', line 1634

VALUE r_gmpz_powm(VALUE self, VALUE exp, VALUE mod)
{
  MP_INT *self_val, *res_val, *mod_val, *exp_val;
  VALUE res;
  int free_mod_val = 0;

  if (GMPZ_P(mod)) {
    mpz_get_struct(mod, mod_val);
    if (mpz_sgn(mod_val) <= 0) {
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
  } else if (FIXNUM_P(mod)) {
    if (FIX2NUM(mod) <= 0) {
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
    mpz_temp_alloc(mod_val);
    mpz_init_set_ui(mod_val, FIX2NUM(mod));
    free_mod_val = 1;
  } else if (BIGNUM_P(mod)) {
    mpz_temp_from_bignum(mod_val, mod);
    if (mpz_sgn(mod_val) <= 0) {
      mpz_temp_free(mod_val);
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
    free_mod_val = 1;
  } else {
    typeerror_as(ZXB, "modulus");
  }
  mpz_make_struct_init(res, res_val);
  mpz_get_struct(self, self_val);

  if (GMPZ_P(exp)) {
    mpz_get_struct(exp, exp_val);
    if (mpz_sgn(mod_val) < 0) {
      rb_raise(rb_eRangeError, "exponent must be nonnegative");
    }
    mpz_powm(res_val, self_val, exp_val, mod_val);
  } else if (FIXNUM_P(exp)) {
    if (FIX2NUM(exp) < 0)
    {
      if (free_mod_val)
        mpz_temp_free(mod_val);
      rb_raise(rb_eRangeError, "exponent must be nonnegative");
    }
    mpz_powm_ui(res_val, self_val, FIX2NUM(exp), mod_val);
  } else if (BIGNUM_P(exp)) {
    mpz_temp_from_bignum(exp_val, exp);
    mpz_powm(res_val, self_val, exp_val, mod_val);
    mpz_temp_free(exp_val);
  } else {
    if (free_mod_val)
      mpz_temp_free(mod_val);
    typeerror_as(ZXB, "exponent");
  }
  if (free_mod_val)
    mpz_temp_free(mod_val);
  return res;
}

#probab_prime?Boolean

Number Theoretic Functions

Returns:

  • (Boolean)

#remove(f) ⇒ Object

Remove all occurrences of the factor f from n, returning the result as r. t, how many such occurrences were removed, is also returned.



2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
# File 'ext/gmpz.c', line 2149

VALUE r_gmpz_remove(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;
#if __GNU_MP_VERSION>2
  unsigned long removed_val;
#else
  int   removed_val;
#endif
  int free_arg_val = 0;

  mpz_get_struct(self, self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    if (mpz_sgn(arg_val) != 1)
      rb_raise(rb_eRangeError, "argument must be positive");
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) <= 0)
      rb_raise(rb_eRangeError, "argument must be positive");
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    if (mpz_sgn(arg_val) != 1) {
      mpz_temp_free(arg_val);
      rb_raise(rb_eRangeError, "argument must be positive");
    }
  } else {
    typeerror(ZXB);
  }

  mpz_make_struct_init(res, res_val);
  removed_val = mpz_remove(res_val, self_val, arg_val);

  if (free_arg_val)
    mpz_temp_free(arg_val);

  return rb_assoc_new(res, INT2FIX(removed_val));
}

#rootObject

call-seq:

a.root(b)

Returns the truncated integer part of the bth root of a.

#scan0(starting_bit) ⇒ Object

Scan a, starting from bit starting_bit, towards more significant bits, until the first 0 bit is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then INT2FIX(ULONG_MAX) is returned. This will happen in scan0 past the end of a negative number.



2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
# File 'ext/gmpz.c', line 2642

VALUE r_gmpz_scan0(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  int bitnr_val;
  mpz_get_struct (self, self_val);
  if (FIXNUM_P (bitnr)) {
    bitnr_val = FIX2INT (bitnr);
  } else {
    typeerror_as (X, "index");
  }
  return INT2FIX (mpz_scan0 (self_val, bitnr_val));
}

#scan1(starting_bit) ⇒ Object

Scan a, starting from bit starting_bit, towards more significant bits, until the first 1 bit is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then INT2FIX(ULONG_MAX) is returned. This will happen in scan1 past the end of a nonnegative number.



2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
# File 'ext/gmpz.c', line 2668

VALUE r_gmpz_scan1(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  int bitnr_val;

  mpz_get_struct (self, self_val);

  if (FIXNUM_P (bitnr)) {
    bitnr_val = FIX2INT (bitnr);
  } else {
    typeerror_as (X, "index");
  }

  return INT2FIX (mpz_scan1 (self_val, bitnr_val));
}

#sgnObject

Returns +1 if a > 0, 0 if a == 0, and -1 if a < 0.



2485
2486
2487
2488
2489
2490
# File 'ext/gmpz.c', line 2485

VALUE r_gmpz_sgn(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);
  return INT2FIX(mpz_sgn(self_val));
}

#sizeObject

Return the size of a measured in number of limbs. If a is zero, the returned value will be zero.

Since:

  • 0.4.19



2950
2951
2952
2953
2954
2955
# File 'ext/gmpz.c', line 2950

VALUE r_gmpz_size(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);
  return INT2FIX(mpz_size(self_val));
}

#size_in_binObject

Return the size of a measured in number of digits in binary. The sign of a is ignored, just the absolute value is used. If a is zero the return value is 1.

Since:

  • 0.2.11



2929
2930
2931
2932
2933
2934
# File 'ext/gmpz.c', line 2929

VALUE r_gmpz_size_in_bin(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct (self, self_val);
  return INT2FIX (mpz_sizeinbase (self_val, 2));
}

#sizeinbaseObject Also known as: size_in_base

#sqrtObject

call-seq:

a.sqrt

Returns the truncated integer part of the square root of a.

#sqrt!Object

call-seq:

a.sqrt!

Sets a to the truncated integer part of its square root.

#sqrtremObject

#square?Boolean

call-seq:

p.square?

Returns true if p is a perfect square, i.e., if the square root of p is an integer. Under this definition both 0 and 1 are considered to be perfect squares.

Returns:

  • (Boolean)

#sub!(b) ⇒ Object

Subtracts b from a in-place, setting a to the difference. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
# File 'ext/gmpz.c', line 1046

VALUE r_gmpz_sub_self(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
    mpz_sub (self_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) > 0)
      mpz_sub_ui (self_val, self_val, FIX2NUM(arg));
    else
      mpz_add_ui (self_val, self_val, -FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    mpz_sub (self_val, self_val, arg_val);
    mpz_temp_free (arg_val);
  } else {
    typeerror (ZXB);
  }
  return Qnil;
}

#submul!(b, c) ⇒ Object

Sets a to a minus b times c. b and c must each be an instance of one of

  • GMP::Z

  • Fixnum

  • Bignum

Since:

  • 0.5.23



1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
# File 'ext/gmpz.c', line 1178

static VALUE r_gmpz_submul_self(VALUE self, VALUE b, VALUE c)
{
  MP_INT *self_val, *b_val, *c_val;
  int free_b_val = 0;

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
  } else if (FIXNUM_P(b)) {
    mpz_temp_alloc(b_val);
    mpz_init_set_si(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "addend");
  }
  mpz_get_struct(self, self_val);

  if (GMPZ_P(c)) {
    mpz_get_struct(c, c_val);
    mpz_submul(self_val, b_val, c_val);
  } else if (FIXNUM_P(c)) {
    if (FIX2NUM(c) < 0)
    {
      if (free_b_val) { mpz_temp_free(b_val); }
      rb_raise(rb_eRangeError, "multiplicand (Fixnum) must be nonnegative");
    }
    mpz_submul_ui(self_val, b_val, FIX2NUM(c));
  } else if (BIGNUM_P(c)) {
    mpz_temp_from_bignum(c_val, c);
    mpz_submul(self_val, b_val, c_val);
    mpz_temp_free(c_val);
  } else {
    if (free_b_val)
      mpz_temp_free(b_val);
    typeerror_as(ZXB, "multiplicand");
  }
  if (free_b_val)
    mpz_temp_free(b_val);
  return self;
}

#swap(b) ⇒ Object

Efficiently swaps the contents of a with b. b must be an instance of GMP::Z.

Returns:

  • nil



754
755
756
757
758
759
760
761
762
763
764
# File 'ext/gmpz.c', line 754

VALUE r_gmpz_swap(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  if (!GMPZ_P(arg)) {
    rb_raise(rb_eTypeError, "Can't swap GMP::Z with object of other class");
  }
  mpz_get_struct(self, self_val);
  mpz_get_struct(arg, arg_val);
  mpz_swap(self_val,arg_val);
  return Qnil;
}

#tdivObject

call-seq:

n.tdiv(d)

Divides n by d, forming a quotient q. tdiv rounds q towards zero. The t stands for “truncate”.

q will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the quotient.

#tmodObject

call-seq:

n.tmod(d)

Divides n by d, forming a remainder r. r will have the same sign as n. The t stands for “truncate”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

The remainder can be negative, so the return value is the absolute value of the remainder.

#to_dObject

TODO:

Implement mpz_fits_slong_p

Returns a as a Float if a fits in a Float.

Otherwise returns the least significant part of a, with the same sign as a.

If a is too big to fit in a Float, the returned result is probably not very useful. To find out if the value will fit, use the function mpz_fits_slong_p (Unimplemented).



814
815
816
817
818
819
820
# File 'ext/gmpz.c', line 814

VALUE r_gmpz_to_d(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);

  return rb_float_new(mpz_get_d(self_val));
}

#to_iObject

TODO:

Implement mpz_fits_slong_p

Returns a as an Fixnum if a fits into a Fixnum.

Otherwise returns the least significant part of a, with the same sign as a.

If a is too big to fit in a Fixnum, the returned result is probably not very useful. To find out if the value will fit, use the function mpz_fits_slong_p (Unimplemented).



785
786
787
788
789
790
791
792
793
794
795
796
797
798
# File 'ext/gmpz.c', line 785

VALUE r_gmpz_to_i(VALUE self)
{
  MP_INT *self_val;
  char *str;
  VALUE res;

  mpz_get_struct(self, self_val);
  if (mpz_fits_slong_p(self_val))
    return rb_int2inum(mpz_get_si(self_val));
  str = mpz_get_str(NULL, 0, self_val);
  res = rb_cstr2inum(str, 10);
  free(str);
  return res;
}

#to_s(*args) ⇒ Object

call-seq:

a.to_s(base = 10)
a.to_s(:bin)
a.to_s(:oct)
a.to_s(:dec)
a.to_s(:hex)

Returns a, as a String. If base is not provided, then the decimal representation will be returned.

From the GMP Manual:

Convert a to a string of digits in base base. The base argument may vary from 2 to 62 or from -2 to -36.

For base in the range 2..36, digits and lower-case letters are used; for -2..-36, digits and upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in that significance order) are used.



844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# File 'ext/gmpz.c', line 844

VALUE r_gmpz_to_s(int argc, VALUE *argv, VALUE self)
{
  MP_INT *self_val;
  char *str;
  VALUE res;
  VALUE base;
  int base_val = 10;
  ID base_id;
  const char * bin_base = "bin";                            /* binary */
  const char * oct_base = "oct";                             /* octal */
  const char * dec_base = "dec";                           /* decimal */
  const char * hex_base = "hex";                       /* hexadecimal */
  ID bin_base_id = rb_intern(bin_base);
  ID oct_base_id = rb_intern(oct_base);
  ID dec_base_id = rb_intern(dec_base);
  ID hex_base_id = rb_intern(hex_base);

  rb_scan_args(argc, argv, "01", &base);
  if (NIL_P(base)) { base = INT2FIX(10); }           /* default value */
  if (FIXNUM_P(base)) {
    base_val = FIX2INT(base);
    if ((base_val >=   2 && base_val <= 62) ||
        (base_val >= -36 && base_val <= -2)) {
      /* good base */
    } else {
      base_val = 10;
      rb_raise(rb_eRangeError, "base must be within [2, 62] or [-36, -2].");
    }
  } else if (SYMBOL_P(base)) {
    base_id = rb_to_id(base);
    if (base_id == bin_base_id) {
      base_val =  2;
    } else if (base_id == oct_base_id) {
      base_val =  8;
    } else if (base_id == dec_base_id) {
      base_val = 10;
    } else if (base_id == hex_base_id) {
      base_val = 16;
    } else {
      base_val = 10;  /* should raise an exception here. */
    }
  }

  Data_Get_Struct(self, MP_INT, self_val);
  str = mpz_get_str(NULL, base_val, self_val);
  res = rb_str_new2(str);
  free (str);

  return res;
}

#tshrObject

call-seq:

n.tshr(d)

Divides n by 2^d, forming a quotient q. tshr rounds q towards zero. The t stands for “truncate”.

q will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the quotient.

#|Object

call-seq:

a | b

Returns a bitwise inclusive-or b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum