Module: Gitlore
- Defined in:
- lib/gitlore.rb,
lib/gitlore/version.rb
Overview
Gitlore: Summarize git commits with AI. A CLI tool that transforms git commits into natural summaries.
Constant Summary collapse
- VERSION =
"0.1.0"
Class Method Summary collapse
- .api_key_error ⇒ Object
- .choose_openai_model ⇒ Object
- .client ⇒ Object
- .summarize_git ⇒ Object
- .summarize_with_ollama(git_log, system_prompt) ⇒ Object
- .summarize_with_openai(git_log, system_prompt) ⇒ Object
Class Method Details
.api_key_error ⇒ Object
118 119 120 121 122 123 |
# File 'lib/gitlore.rb', line 118 def self.api_key_error return true if ENV["OPENAI_API_KEY"] puts "#{@pastel.red("Error:")} OPENAI_API_KEY environment variable is not set." false end |
.choose_openai_model ⇒ Object
21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/gitlore.rb', line 21 def self.choose_openai_model return nil unless client && api_key_error begin model_names = client.models.list.data.map(&:id).sort.select do |model| model.include?("gpt") end @prompt.select("Choose an OpenAI model:", model_names, per_page: 10) rescue StandardError => e puts "#{@pastel.red("Error listing models:")} #{e.message}" nil end end |
.client ⇒ Object
17 18 19 |
# File 'lib/gitlore.rb', line 17 def self.client @client ||= OpenAI::Client.new(api_key: ENV["OPENAI_API_KEY"]) if ENV["OPENAI_API_KEY"] end |
.summarize_git ⇒ Object
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# File 'lib/gitlore.rb', line 35 def self.summarize_git count = @prompt.ask("How many recent commits do you want to summarize?", default: "10").to_i provider = @prompt.select("Choose model provider", %w[openai ollama]) style = @prompt.select("Choose summary style:", %w[narrative technical]) git_log = `git log -n #{count} --pretty=format:"%h %s (%an)"` puts "\n#{@pastel.cyan("๐งพ Git Log:")}\n\n#{git_log}\n\n" system_prompts = { "narrative" => "You are a skilled storyteller. Given a list of git commits, your task is to craft a concise and engaging narrative that captures the essence of the changes, making them accessible and compelling for a non-technical audience.", "technical" => "You are a senior software engineer. Given a list of git commits, your task is to produce a precise, technically accurate summary of the changes, suitable for other developers and engineers." } case provider when "openai" summarize_with_openai(git_log, system_prompts[style]) else summarize_with_ollama(git_log, system_prompts[style]) end end |
.summarize_with_ollama(git_log, system_prompt) ⇒ Object
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# File 'lib/gitlore.rb', line 74 def self.summarize_with_ollama(git_log, system_prompt) conn = Faraday.new(url: "http://localhost:11434") do |f| f.request :json f.adapter Faraday.default_adapter end models_response = conn.get("/api/tags") if models_response.status != 200 puts "#{@pastel.red("Error:")} Could not fetch models from Ollama server. Check if Ollama is running." return "Failed to connect to Ollama." end models = JSON.parse(models_response.body)["models"] model_names = models.map { |m| m["name"] } if model_names.empty? puts "#{@pastel.red("Error:")} No models found on Ollama server." return "No models available." end local_model = @prompt.select("Choose the local model to use", model_names) chat_response = conn.post("/api/chat") do |req| req.headers["Content-Type"] = "application/json" req.body = { model: local_model, messages: [ { role: "system", content: system_prompt }, { role: "user", content: "Summarize these commits:\n\n#{git_log}" } ], stream: false } end if chat_response.status != 200 puts "#{@pastel.red("Error:")} Failed to get response from Ollama." return "Failed to get Ollama response." end summary = JSON.parse(chat_response.body)["message"]["content"] puts TTY::Markdown.parse(summary) summary end |
.summarize_with_openai(git_log, system_prompt) ⇒ Object
59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/gitlore.rb', line 59 def self.summarize_with_openai(git_log, system_prompt) selected_model = choose_openai_model response = client.chat.completions.create( model: selected_model, messages: [ { role: "system", content: system_prompt }, { role: "user", content: "Summarize these commits:\n\n#{git_log}" } ], temperature: 0 ) summary = response.choices[0]..content puts TTY::Markdown.parse(summary) summary end |