Module: Geminize::VectorUtils
- Defined in:
- lib/geminize/vector_utils.rb
Overview
Utility module for vector operations used with embeddings
Class Method Summary collapse
-
.average_vectors(vectors) ⇒ Array<Float>
Average multiple vectors.
-
.cosine_similarity(vec1, vec2) ⇒ Float
Calculate the cosine similarity between two vectors.
-
.dot_product(vec1, vec2) ⇒ Float
Calculate the dot product of two vectors.
-
.euclidean_distance(vec1, vec2) ⇒ Float
Calculate the Euclidean distance between two vectors.
-
.most_similar(target, vectors, top_k = nil, metric = :cosine) ⇒ Array<Hash>
Find the most similar vectors to a target vector.
-
.normalize(vec) ⇒ Array<Float>
Normalize a vector to unit length.
Class Method Details
.average_vectors(vectors) ⇒ Array<Float>
Average multiple vectors
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# File 'lib/geminize/vector_utils.rb', line 102 def average_vectors(vectors) if vectors.empty? raise Geminize::ValidationError.new( "Cannot average an empty array of vectors", "INVALID_ARGUMENT" ) end # Check all vectors have same dimensionality dim = vectors.first.length vectors.each_with_index do |vec, i| unless vec.length == dim raise Geminize::ValidationError.new( "All vectors must have the same dimensions (expected #{dim}, got #{vec.length} at index #{i})", "INVALID_ARGUMENT" ) end end # Calculate average avg = Array.new(dim, 0.0) vectors.each do |vec| vec.each_with_index do |v, i| avg[i] += v end end avg.map { |sum| sum / vectors.length } end |
.cosine_similarity(vec1, vec2) ⇒ Float
Calculate the cosine similarity between two vectors
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
# File 'lib/geminize/vector_utils.rb', line 12 def cosine_similarity(vec1, vec2) unless vec1.length == vec2.length raise Geminize::ValidationError.new( "Vectors must have the same dimensions (#{vec1.length} vs #{vec2.length})", "INVALID_ARGUMENT" ) end dot_product = 0.0 magnitude1 = 0.0 magnitude2 = 0.0 vec1.zip(vec2).each do |v1, v2| dot_product += v1 * v2 magnitude1 += v1 * v1 magnitude2 += v2 * v2 end magnitude1 = Math.sqrt(magnitude1) magnitude2 = Math.sqrt(magnitude2) # Guard against division by zero return 0.0 if magnitude1.zero? || magnitude2.zero? dot_product / (magnitude1 * magnitude2) end |
.dot_product(vec1, vec2) ⇒ Float
Calculate the dot product of two vectors
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/geminize/vector_utils.rb', line 66 def dot_product(vec1, vec2) unless vec1.length == vec2.length raise Geminize::ValidationError.new( "Vectors must have the same dimensions (#{vec1.length} vs #{vec2.length})", "INVALID_ARGUMENT" ) end product = 0.0 vec1.zip(vec2).each do |v1, v2| product += v1 * v2 end product end |
.euclidean_distance(vec1, vec2) ⇒ Float
Calculate the Euclidean distance between two vectors
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/geminize/vector_utils.rb', line 44 def euclidean_distance(vec1, vec2) unless vec1.length == vec2.length raise Geminize::ValidationError.new( "Vectors must have the same dimensions (#{vec1.length} vs #{vec2.length})", "INVALID_ARGUMENT" ) end sum_square_diff = 0.0 vec1.zip(vec2).each do |v1, v2| diff = v1 - v2 sum_square_diff += diff * diff end Math.sqrt(sum_square_diff) end |
.most_similar(target, vectors, top_k = nil, metric = :cosine) ⇒ Array<Hash>
Find the most similar vectors to a target vector
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# File 'lib/geminize/vector_utils.rb', line 138 def most_similar(target, vectors, top_k = nil, metric = :cosine) similarities = [] vectors.each_with_index do |vec, i| similarity = case metric when :cosine cosine_similarity(target, vec) when :euclidean # Convert to similarity (higher is more similar) 1.0 / (1.0 + euclidean_distance(target, vec)) else raise Geminize::ValidationError.new( "Unknown metric: #{metric}. Supported metrics: :cosine, :euclidean", "INVALID_ARGUMENT" ) end similarities << {index: i, similarity: similarity} end # Sort by similarity (descending) sorted = similarities.sort_by { |s| -s[:similarity] } top_k ? sorted.take(top_k) : sorted end |
.normalize(vec) ⇒ Array<Float>
Normalize a vector to unit length
85 86 87 88 89 90 91 92 93 94 95 96 |
# File 'lib/geminize/vector_utils.rb', line 85 def normalize(vec) magnitude = 0.0 vec.each do |v| magnitude += v * v end magnitude = Math.sqrt(magnitude) # Handle zero magnitude vector return vec.map { 0.0 } if magnitude.zero? vec.map { |v| v / magnitude } end |