Module: Flt::Num::AuxiliarFunctions
Constant Summary collapse
- EXP_INC =
4
- LOG_PREC_INC =
4
- LOG_RADIX_INC =
2
- LOG_RADIX_EXTRA =
3
- LOG2_MULT =
TODO: K=100? K=64? …
100
- LOG2_LB_CORRECTION =
(1..15).map{|i| (LOG2_MULT*Math.log(16.0/i)/Math.log(2)).ceil}
[ # (1..15).map{|i| (LOG2_MULT*Math.log(16.0/i)/Math.log(2)).ceil} 400, 300, 242, 200, 168, 142, 120, 100, 84, 68, 55, 42, 30, 20, 10 # for LOG2_MULT=64: 256, 192, 155, 128, 108, 91, 77, 64, 54, 44, 35, 27, 20, 13, 6 ]
- LOG10_MULT =
100
- LOG10_LB_CORRECTION =
(1..9).map_hash{|i| LOG10_MULT - (LOG10_MULT*Math.log10(i)).floor}
{ # (1..9).map_hash{|i| LOG10_MULT - (LOG10_MULT*Math.log10(i)).floor} '1'=> 100, '2'=> 70, '3'=> 53, '4'=> 40, '5'=> 31, '6'=> 23, '7'=> 16, '8'=> 10, '9'=> 5 }
Class Attribute Summary collapse
-
.log_radix_digits ⇒ Object
readonly
Returns the value of attribute log_radix_digits.
Class Method Summary collapse
-
._convert(x, error = true) ⇒ Object
Convert a numeric value to decimal (internal use).
-
._div_nearest(a, b) ⇒ Object
Closest integer to a/b, a and b positive integers; rounds to even in the case of a tie.
-
._exp(c, e, p) ⇒ Object
Compute an approximation to exp(c*radix**e), with p decimal places of precision.
-
._iexp(x, m, l = 8) ⇒ Object
Given integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M).
-
._ilog(x, m, l = 8) ⇒ Object
Integer approximation to M*log(x/M), with absolute error boundable in terms only of x/M.
-
._log(c, e, p) ⇒ Object
Given integers c, e and p with c > 0, compute an integer approximation to radix**p * log(c*radix**e), with an absolute error of at most 1.
-
._log_radix_digits(p) ⇒ Object
Given an integer p >= 0, return floor(radix**p)*log(radix).
- ._log_radix_lb(c) ⇒ Object
- ._log_radix_mult ⇒ Object
-
._normalize(op1, op2, prec = 0) ⇒ Object
Normalizes op1, op2 to have the same exp and length of coefficient.
- ._number_of_digits(v) ⇒ Object
-
._parser(txt, options = {}) ⇒ Object
Parse numeric text literals (internal use).
-
._power(xc, xe, yc, ye, p) ⇒ Object
Given integers xc, xe, yc and ye representing Num x = xc*radix**xe and y = yc*radix**ye, compute x**y.
-
._rshift_nearest(x, shift) ⇒ Object
Given an integer x and a nonnegative integer shift, return closest integer to x / 2**shift; use round-to-even in case of a tie.
-
._sqrt_nearest(n, a) ⇒ Object
Closest integer to the square root of the positive integer n.
-
.log10_lb(c) ⇒ Object
Compute a lower bound for LOG10_MULT*log10© for a positive integer c.
-
.log2_lb(c) ⇒ Object
Compute a lower bound for LOG2_MULT*log10© for a positive integer c.
Class Attribute Details
.log_radix_digits ⇒ Object (readonly)
Returns the value of attribute log_radix_digits.
4479 4480 4481 |
# File 'lib/flt/num.rb', line 4479 def log_radix_digits @log_radix_digits end |
Class Method Details
._convert(x, error = true) ⇒ Object
Convert a numeric value to decimal (internal use)
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 |
# File 'lib/flt/num.rb', line 4166 def _convert(x, error=true) case x when num_class x when *num_class.context.coercible_types num_class.new(x) else raise TypeError, "Unable to convert #{x.class} to #{num_class}" if error nil end end |
._div_nearest(a, b) ⇒ Object
Closest integer to a/b, a and b positive integers; rounds to even in the case of a tie.
4468 4469 4470 4471 |
# File 'lib/flt/num.rb', line 4468 def _div_nearest(a, b) q, r = a.divmod(b) q + (((2*r + (q&1)) > b) ? 1 : 0) end |
._exp(c, e, p) ⇒ Object
Compute an approximation to exp(c*radix**e), with p decimal places of precision. Returns integers d, f such that:
radix**(p-1) <= d <= radix**p, and
(d-1)*radix**f < exp(c*radix**e) < (d+1)*radix**f
In other words, d*radix**f is an approximation to exp(c*radix**e) with p digits of precision, and with an error in d of at most 1. This is almost, but not quite, the same as the error being < 1ulp: when d
radix**(p-1) the error could be up to radix ulp.
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 |
# File 'lib/flt/num.rb', line 4272 def _exp(c, e, p) # we'll call iexp with M = radix**(p+2), giving p+3 digits of precision p += EXP_INC # compute log(radix) with extra precision = adjusted exponent of c*radix**e # TODO: without the .abs tests fail because c is negative: c should not be negative!! extra = [0, e + _number_of_digits(c.abs) - 1].max q = p + extra # compute quotient c*radix**e/(log(radix)) = c*radix**(e+q)/(log(radix)*radix**q), # rounding down shift = e+q if shift >= 0 cshift = c*num_class.int_radix_power(shift) else cshift = c/num_class.int_radix_power(-shift) end quot, rem = cshift.divmod(_log_radix_digits(q)) # reduce remainder back to original precision rem = _div_nearest(rem, num_class.int_radix_power(extra)) # for radix=10: error in result of _iexp < 120; error after division < 0.62 r = _div_nearest(_iexp(rem, num_class.int_radix_power(p)), num_class.int_radix_power(EXP_INC+1)), quot - p + (EXP_INC+1) return r end |
._iexp(x, m, l = 8) ⇒ Object
Given integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M). For redix=10, and 0 <= x/M <= 2.4, the absolute error in the result is bounded by 60 (and is usually much smaller).
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 |
# File 'lib/flt/num.rb', line 4353 def _iexp(x, m, l=8) # Algorithm: to compute exp(z) for a real number z, first divide z # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor # series # # expm1(x) = x + x**2/2! + x**3/3! + ... # # Now use the identity # # expm1(2x) = expm1(x)*(expm1(x)+2) # # R times to compute the sequence expm1(z/2**R), # expm1(z/2**(R-1)), ... , exp(z/2), exp(z). # Find R such that x/2**R/M <= 2**-L r = _nbits((x<<l)/m) # Taylor series. (2**L)**T > M t = -(-num_class.radix*_number_of_digits(m)/(3*l)).to_i y = _div_nearest(x, t) mshift = m<<r (1...t).to_a.reverse.each do |i| y = _div_nearest(x*(mshift + y), mshift * i) end # Expansion (0...r).to_a.reverse.each do |k| mshift = m<<(k+2) y = _div_nearest(y*(y+mshift), mshift) end return m+y end |
._ilog(x, m, l = 8) ⇒ Object
Integer approximation to M*log(x/M), with absolute error boundable in terms only of x/M.
Given positive integers x and M, return an integer approximation to M * log(x/M). For radix=10, L = 8 and 0.1 <= x/M <= 10 the difference between the approximation and the exact result is at most 22. For L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In both cases these are upper bounds on the error; it will usually be much smaller.
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 |
# File 'lib/flt/num.rb', line 4398 def _ilog(x, m, l = 8) # The basic algorithm is the following: let log1p be the function # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use # the reduction # # log1p(y) = 2*log1p(y/(1+sqrt(1+y))) # # repeatedly until the argument to log1p is small (< 2**-L in # absolute value). For small y we can use the Taylor series # expansion # # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T # # truncating at T such that y**T is small enough. The whole # computation is carried out in a form of fixed-point arithmetic, # with a real number z being represented by an integer # approximation to z*M. To avoid loss of precision, the y below # is actually an integer approximation to 2**R*y*M, where R is the # number of reductions performed so far. y = x-m # argument reduction; R = number of reductions performed r = 0 # while (r <= l && y.abs << l-r >= m || # r > l and y.abs>> r-l >= m) while (((r <= l) && ((y.abs << (l-r)) >= m)) || ((r > l) && ((y.abs>>(r-l)) >= m))) y = _div_nearest((m*y) << 1, m + _sqrt_nearest(m*(m+_rshift_nearest(y, r)), m)) r += 1 end # Taylor series with T terms t = -(-10*_number_of_digits(m)/(3*l)).to_i yshift = _rshift_nearest(y, r) w = _div_nearest(m, t) # (1...t).reverse_each do |k| # Ruby 1.9 (1...t).to_a.reverse.each do |k| w = _div_nearest(m, k) - _div_nearest(yshift*w, m) end return _div_nearest(w*y, m) end |
._log(c, e, p) ⇒ Object
Given integers c, e and p with c > 0, compute an integer approximation to radix**p * log(c*radix**e), with an absolute error of at most 1. Assumes that c*radix**e is not exactly 1.
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 |
# File 'lib/flt/num.rb', line 4303 def _log(c, e, p) # Increase precision by 2. The precision increase is compensated # for at the end with a division p += LOG_PREC_INC # rewrite c*radix**e as d*radix**f with either f >= 0 and 1 <= d <= radix, # or f <= 0 and 1/radix <= d <= 1. Then we can compute radix**p * log(c*radix**e) # as radix**p * log(d) + radix**p*f * log(radix). l = _number_of_digits(c) f = e+l - ((e+l >= 1) ? 1 : 0) # compute approximation to radix**p*log(d), with error < 27 for radix=10 if p > 0 k = e+p-f if k >= 0 c *= num_class.int_radix_power(k) else c = _div_nearest(c, num_class.int_radix_power(-k)) # error of <= 0.5 in c for radix=10 end # _ilog magnifies existing error in c by a factor of at most radix log_d = _ilog(c, num_class.int_radix_power(p)) # error < 5 + 22 = 27 for radix=10 else # p <= 0: just approximate the whole thing by 0; error < 2.31 for radix=10 log_d = 0 end # compute approximation to f*radix**p*log(radix), with error < 11 for radix=10. if f extra = _number_of_digits(f.abs) - 1 if p + extra >= 0 # for radix=10: # error in f * _log10_digits(p+extra) < |f| * 1 = |f| # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 f_log_r = _div_nearest(f*_log_radix_digits(p+extra), num_class.int_radix_power(extra)) else f_log_r = 0 end else f_log_r = 0 end # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 for radix=10 return _div_nearest(f_log_r + log_d, num_class.int_radix_power(LOG_PREC_INC)) # extra radix factor for base 2 ??? end |
._log_radix_digits(p) ⇒ Object
Given an integer p >= 0, return floor(radix**p)*log(radix).
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 |
# File 'lib/flt/num.rb', line 4485 def _log_radix_digits(p) # digits are stored as a string, for quick conversion to # integer in the case that we've already computed enough # digits; the stored digits should always bge correct # (truncated, not rounded to nearest). raise ArgumentError, "p should be nonnegative" if p<0 stored_digits = (AuxiliarFunctions.log_radix_digits[num_class.radix] || "") if p >= stored_digits.length digits = nil # compute p+3, p+6, p+9, ... digits; continue until at # least one of the extra digits is nonzero extra = LOG_RADIX_EXTRA loop do # compute p+extra digits, correct to within 1ulp m = num_class.int_radix_power(p+extra+LOG_RADIX_INC) digits = _div_nearest(_ilog(num_class.radix*m, m), num_class.int_radix_power(LOG_RADIX_INC)).to_s(num_class.radix) break if digits[-extra..-1] != '0'*extra extra += LOG_RADIX_EXTRA end # if the radix < e (i.e. only for radix==2), we must prefix with a 0 because log(radix)<1 # BUT THIS REDUCES PRECISION BY ONE? : may be avoid prefix and adjust scaling in the caller prefix = num_class.radix==2 ? '0' : '' # keep all reliable digits so far; remove trailing zeros # and next nonzero digit AuxiliarFunctions.log_radix_digits[num_class.radix] = prefix + digits.sub(/0*$/,'')[0...-1] end return (AuxiliarFunctions.log_radix_digits[num_class.radix][0..p]).to_i(num_class.radix) end |
._log_radix_lb(c) ⇒ Object
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 |
# File 'lib/flt/num.rb', line 4549 def _log_radix_lb(c) case num_class.radix when 10 log10_lb(c) when 2 log2_lb(c) else raise ArgumentError, "_log_radix_lb not implemented for base #{num_class.radix}" end end |
._log_radix_mult ⇒ Object
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 |
# File 'lib/flt/num.rb', line 4538 def _log_radix_mult case num_class.radix when 10 LOG10_MULT when 2 LOG2_MULT else raise ArgumentError, "_log_radix_mult not implemented for base #{num_class.radix}" end end |
._normalize(op1, op2, prec = 0) ⇒ Object
Normalizes op1, op2 to have the same exp and length of coefficient. Used for addition.
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 |
# File 'lib/flt/num.rb', line 4197 def _normalize(op1, op2, prec=0) if op1.exponent < op2.exponent swap = true tmp,other = op2,op1 else swap = false tmp,other = op1,op2 end tmp_len = tmp.number_of_digits other_len = other.number_of_digits exp = tmp.exponent + [-1, tmp_len - prec - 2].min if (other_len+other.exponent-1 < exp) && prec>0 other = num_class.new([other.sign, 1, exp]) end tmp = Num(tmp.sign, num_class.int_mult_radix_power(tmp.coefficient, tmp.exponent-other.exponent), other.exponent) return swap ? [other, tmp] : [tmp, other] end |
._number_of_digits(v) ⇒ Object
4560 4561 4562 |
# File 'lib/flt/num.rb', line 4560 def _number_of_digits(v) _ndigits(v, num_class.radix) end |
._parser(txt, options = {}) ⇒ Object
Parse numeric text literals (internal use)
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 |
# File 'lib/flt/num.rb', line 4179 def _parser(txt, ={}) base = [:base] md = /^\s*([-+])?(?:(?:(\d+)(?:\.(\d*))?|\.(\d+))(?:E([-+]?\d+))?|Inf(?:inity)?|(s)?NaN(\d*))\s*$/i.match(txt) if md base ||= 10 OpenStruct.new :sign=>md[1], :int=>md[2], :frac=>md[3], :onlyfrac=>md[4], :exp=>md[5], :signal=>md[6], :diag=>md[7], :base=>base else md = /^\s*([-+])?0x(?:(?:([\da-f]+)(?:\.([\da-f]*))?|\.([\da-f]+))(?:P([-+]?\d+))?)\s*$/i.match(txt) if md base = 16 OpenStruct.new :sign=>md[1], :int=>md[2], :frac=>md[3], :onlyfrac=>md[4], :exp=>md[5], :signal=>nil, :diag=>nil, :base=>base, :exp_base=>2 end end end |
._power(xc, xe, yc, ye, p) ⇒ Object
Given integers xc, xe, yc and ye representing Num x = xc*radix**xe and y = yc*radix**ye, compute x**y. Returns a pair of integers (c, e) such that:
radix**(p-1) <= c <= radix**p, and
(c-1)*radix**e < x**y < (c+1)*radix**e
in other words, c*radix**e is an approximation to x**y with p digits of precision, and with an error in c of at most 1. (This is almost, but not quite, the same as the error being < 1ulp: when c
radix**(p-1) we can only guarantee error < radix ulp.)
We assume that: x is positive and not equal to 1, and y is nonzero.
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 |
# File 'lib/flt/num.rb', line 4229 def _power(xc, xe, yc, ye, p) # Find b such that radix**(b-1) <= |y| <= radix**b b = _number_of_digits(yc.abs) + ye # log(x) = lxc*radix**(-p-b-1), to p+b+1 places after the decimal point lxc = _log(xc, xe, p+b+1) # compute product y*log(x) = yc*lxc*radix**(-p-b-1+ye) = pc*radix**(-p-1) shift = ye-b if shift >= 0 pc = lxc*yc*num_class.int_radix_power(shift) else pc = _div_nearest(lxc*yc, num_class.int_radix_power(-shift)) end if pc == 0 # we prefer a result that isn't exactly 1; this makes it # easier to compute a correctly rounded result in __pow__ if (_number_of_digits(xc) + xe >= 1) == (yc > 0) # if x**y > 1: coeff, exp = num_class.int_radix_power(p-1)+1, 1-p else coeff, exp = num_class.int_radix_power(p)-1, -p end else coeff, exp = _exp(pc, -(p+1), p+1) coeff = _div_nearest(coeff, num_class.radix) exp += 1 end return coeff, exp end |
._rshift_nearest(x, shift) ⇒ Object
Given an integer x and a nonnegative integer shift, return closest integer to x / 2**shift; use round-to-even in case of a tie.
4460 4461 4462 4463 4464 |
# File 'lib/flt/num.rb', line 4460 def _rshift_nearest(x, shift) b, q = (1 << shift), (x >> shift) return q + (((2*(x & (b-1)) + (q&1)) > b) ? 1 : 0) #return q + (2*(x & (b-1)) + (((q&1) > b) ? 1 : 0)) end |
._sqrt_nearest(n, a) ⇒ Object
Closest integer to the square root of the positive integer n. a is an initial approximation to the square root. Any positive integer will do for a, but the closer a is to the square root of n the faster convergence will be.
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 |
# File 'lib/flt/num.rb', line 4445 def _sqrt_nearest(n, a) if n <= 0 or a <= 0 raise ArgumentError, "Both arguments to _sqrt_nearest should be positive." end b=0 while a != b b, a = a, a--n/a>>1 # ?? end return a end |
.log10_lb(c) ⇒ Object
Compute a lower bound for LOG10_MULT*log10© for a positive integer c.
4532 4533 4534 4535 4536 |
# File 'lib/flt/num.rb', line 4532 def log10_lb(c) raise ArgumentError, "The argument to _log10_lb should be nonnegative." if c <= 0 str_c = c.to_s return LOG10_MULT*str_c.length - LOG10_LB_CORRECTION[str_c[0,1]] end |
.log2_lb(c) ⇒ Object
Compute a lower bound for LOG2_MULT*log10© for a positive integer c.
4520 4521 4522 4523 4524 |
# File 'lib/flt/num.rb', line 4520 def log2_lb(c) raise ArgumentError, "The argument to _log2_lb should be nonnegative." if c <= 0 str_c = c.to_s(16) return LOG2_MULT*4*str_c.length - LOG2_LB_CORRECTION[str_c[0,1].to_i(16)-1] end |