Class: Flt::Num::ContextBase

Inherits:
Object
  • Object
show all
Defined in:
lib/flt/num.rb,
lib/flt/complex.rb

Overview

Base class for Context classes.

Derived classes will implement Floating-Point contexts for the specific floating-point types (DecNum, BinNum)

Direct Known Subclasses

BinNum::Context, DecNum::Context

Constant Summary collapse

CONDITION_MAP =
{
  #ConversionSyntax=>InvalidOperation,
  #DivisionImpossible=>InvalidOperation,
  DivisionUndefined=>InvalidOperation,
  InvalidContext=>InvalidOperation
}

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(num_class, *options) ⇒ ContextBase

If an options hash is passed, the options are applied to the default context; if a Context is passed as the first argument, it is used as the base instead of the default context.

The valid options are:

  • :rounding : one of :half_even, :half_down, :half_up, :floor, :ceiling, :down, :up, :up05

  • :precision : number of digits (or 0 for exact precision)

  • :exact : if true precision is ignored and Inexact conditions are trapped,

    if :quiet it set exact precision but no trapping;
    
  • :traps : a Flags object with the exceptions to be trapped

  • :flags : a Flags object with the raised flags

  • :ignored_flags : a Flags object with the exceptions to be ignored

  • :emin, :emax : minimum and maximum adjusted exponents

  • :elimit : the exponent limits can also be defined by a single value; if positive it is taken as emax and emin=1-emax; otherwiae it is taken as emin and emax=1-emin. Such limits comply with IEEE 754-2008

  • :capitals : (true or false) to use capitals in text representations

  • :clamp : (true or false) enables clamping

See also the context constructor method Flt::Num.Context().



424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# File 'lib/flt/num.rb', line 424

def initialize(num_class, *options)
  @num_class = num_class

  if options.first.kind_of?(ContextBase)
    base = options.shift
    copy_from base
  else
    @exact = false
    @rounding = @emin = @emax = nil
    @capitals = false
    @clamp = false
    @ignored_flags = Num::Flags()
    @traps = Num::Flags()
    @flags = Num::Flags()
    @coercible_type_handlers = num_class.base_coercible_types.dup
    @conversions = num_class.base_conversions.dup
    @angle = :rad # angular units: :rad (radians) / :deg (degrees) / :grad (gradians)
  end
  assign options.first

end

Instance Attribute Details

#angleObject

Returns the value of attribute angle.



509
510
511
# File 'lib/flt/num.rb', line 509

def angle
  @angle
end

#capitalsObject

Returns the value of attribute capitals.



509
510
511
# File 'lib/flt/num.rb', line 509

def capitals
  @capitals
end

#clampObject

Returns the value of attribute clamp.



509
510
511
# File 'lib/flt/num.rb', line 509

def clamp
  @clamp
end

#emaxObject

Returns the value of attribute emax.



509
510
511
# File 'lib/flt/num.rb', line 509

def emax
  @emax
end

#eminObject

Returns the value of attribute emin.



509
510
511
# File 'lib/flt/num.rb', line 509

def emin
  @emin
end

#flagsObject

Returns the value of attribute flags.



509
510
511
# File 'lib/flt/num.rb', line 509

def flags
  @flags
end

#ignored_flagsObject

Returns the value of attribute ignored_flags.



509
510
511
# File 'lib/flt/num.rb', line 509

def ignored_flags
  @ignored_flags
end

#roundingObject

Returns the value of attribute rounding.



509
510
511
# File 'lib/flt/num.rb', line 509

def rounding
  @rounding
end

#trapsObject

Returns the value of attribute traps.



509
510
511
# File 'lib/flt/num.rb', line 509

def traps
  @traps
end

Instance Method Details

#_coerce(x) ⇒ Object

Internally used to convert numeric types to DecNum (or to an array [sign,coefficient,exponent])



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
# File 'lib/flt/num.rb', line 1081

def _coerce(x)
  c = x.class
  while c!=Object && (h=@coercible_type_handlers[c]).nil?
    c = c.superclass
  end
  if h
    h.call(x, self)
  else
    nil
  end
end

#abs(x) ⇒ Object

Absolute value of a decimal number



695
696
697
# File 'lib/flt/num.rb', line 695

def abs(x)
  _convert(x).abs(self)
end

#add(x, y) ⇒ Object

Addition of two decimal numbers



675
676
677
# File 'lib/flt/num.rb', line 675

def add(x,y)
  _convert(x).add(y,self)
end

#assign(options) ⇒ Object

Alters the contexts by assigning options from a Hash. See DecNum#new() for the valid options.



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
# File 'lib/flt/num.rb', line 611

def assign(options)
  if options
    @rounding = options[:rounding] unless options[:rounding].nil?
    @precision = options[:precision] unless options[:precision].nil?
    @traps = DecNum::Flags(options[:traps]) unless options[:traps].nil?
    @flags = DecNum::Flags(options[:flags]) unless options[:flags].nil?
    @ignored_flags = DecNum::Flags(options[:ignored_flags]) unless options[:ignored_flags].nil?
    if elimit=options[:elimit]
      @emin, @emax = [elimit, 1-elimit].sort
    end
    @emin = options[:emin] unless options[:emin].nil?
    @emax = options[:emax] unless options[:emax].nil?
    @capitals = options[:capitals ] unless options[:capitals ].nil?
    @clamp = options[:clamp ] unless options[:clamp ].nil?
    @exact = options[:exact ] unless options[:exact ].nil?
    @angle = options[:angle ] unless options[:angle ].nil?
    @precision += options[:extra_precision] unless options[:extra_precision].nil?
    update_precision
  end
end

#clamp?Boolean

is clamping enabled?

Returns:

  • (Boolean)


575
576
577
# File 'lib/flt/num.rb', line 575

def clamp?
  @clamp
end

#cmath(*parameters, &blk) ⇒ Object



279
280
281
282
283
284
285
286
287
288
# File 'lib/flt/complex.rb', line 279

def cmath(*parameters, &blk)
  # if ComplexContext is derived from ContextBase: return ComplexContext(self).math(*parameters, &blk)
  num_class.context(self) do
    if parameters.empty?
      Flt.ComplexContext(num_class.context).instance_eval &blk
    else
      Flt.xiComplexContext(num_class.context).instance_exec *parameters, &blk
    end
  end
end

#coefficient(x) ⇒ Object



1131
1132
1133
# File 'lib/flt/num.rb', line 1131

def coefficient(x)
  _convert(x).coefficient
end

#coercible_typesObject

Internal use: array of numeric types that be coerced to DecNum.



1071
1072
1073
# File 'lib/flt/num.rb', line 1071

def coercible_types
  @coercible_type_handlers.keys
end

#coercible_types_or_numObject

Internal use: array of numeric types that be coerced to DecNum, including DecNum



1076
1077
1078
# File 'lib/flt/num.rb', line 1076

def coercible_types_or_num
  [num_class] + coercible_types
end

#compare(x, y) ⇒ Object

Compares like <=> but returns a DecNum value.

  • -1 if x < y

  • 0 if x == b

  • +1 if x > y

  • NaN if x or y is NaN



876
877
878
# File 'lib/flt/num.rb', line 876

def compare(x,y)
  _convert(x).compare(y, self)
end

#convert_to(type, x) ⇒ Object

Convert a DecNum x to other numerical type



1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
# File 'lib/flt/num.rb', line 1106

def convert_to(type, x)
  converter = @conversions[type]
  if converter.nil?
    raise TypeError, "Undefined conversion from DecNum to #{type}."
  elsif converter.is_a?(Symbol)
    x.send converter
  else
    converter.call(x)
  end
end

#copy_abs(x) ⇒ Object

Returns a copy of x with the sign set to +



881
882
883
# File 'lib/flt/num.rb', line 881

def copy_abs(x)
  _convert(x).copy_abs
end

#copy_from(other) ⇒ Object

Copy the state from other Context object.

Raises:

  • (TypeError)


636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# File 'lib/flt/num.rb', line 636

def copy_from(other)
  raise TypeError, "Assign #{other.num_class} context to #{self.num_class} context" if other.num_class != self.num_class
  @rounding = other.rounding
  @precision = other.precision
  @traps = other.traps.dup
  @flags = other.flags.dup
  @ignored_flags = other.ignored_flags.dup
  @emin = other.emin
  @emax = other.emax
  @capitals = other.capitals
  @clamp = other.clamp
  @exact = other.exact
  @coercible_type_handlers = other.coercible_type_handlers.dup
  @conversions = other.conversions.dup
  @angle = other.angle
end

#copy_negate(x) ⇒ Object

Returns a copy of x with the sign inverted



886
887
888
# File 'lib/flt/num.rb', line 886

def copy_negate(x)
  _convert(x).copy_negate
end

#copy_sign(x, y) ⇒ Object

Returns a copy of x with the sign of y



891
892
893
# File 'lib/flt/num.rb', line 891

def copy_sign(x,y)
  _convert(x).copy_sign(y)
end

#define_conversion_from(type, &blk) ⇒ Object

Define a numerical conversion from type to DecNum. The block that defines the conversion has two parameters: the value to be converted and the context and must return either a DecNum or [sign,coefficient,exponent]



1096
1097
1098
# File 'lib/flt/num.rb', line 1096

def define_conversion_from(type, &blk)
  @coercible_type_handlers[type] = blk
end

#define_conversion_to(type, &blk) ⇒ Object

Define a numerical conversion from DecNum to type as an instance method of DecNum



1101
1102
1103
# File 'lib/flt/num.rb', line 1101

def define_conversion_to(type, &blk)
  @conversions[type] = blk
end

#digitsObject

synonym for precision()



555
556
557
# File 'lib/flt/num.rb', line 555

def digits
  self.precision
end

#digits=(n) ⇒ Object

synonym for precision=()



560
561
562
# File 'lib/flt/num.rb', line 560

def digits=(n)
  self.precision=n
end

#div(x, y) ⇒ Object

Ruby-style integer division: (x/y).floor



828
829
830
# File 'lib/flt/num.rb', line 828

def div(x,y)
  _convert(x).div(y,self)
end

#divide(x, y) ⇒ Object

Division of two decimal numbers



690
691
692
# File 'lib/flt/num.rb', line 690

def divide(x,y)
  _convert(x).divide(y,self)
end

#divide_int(x, y) ⇒ Object

General Decimal Arithmetic Specification integer division: (x/y).truncate



843
844
845
# File 'lib/flt/num.rb', line 843

def divide_int(x,y)
  _convert(x).divide_int(y,self)
end

#divmod(x, y) ⇒ Object

Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor



838
839
840
# File 'lib/flt/num.rb', line 838

def divmod(x,y)
  _convert(x).divmod(y,self)
end

#divrem(x, y) ⇒ Object

General Decimal Arithmetic Specification integer division and remainder:

(x/y).truncate, x - y*(x/y).truncate


860
861
862
# File 'lib/flt/num.rb', line 860

def divrem(x,y)
  _convert(x).divrem(y,self)
end

#dupObject



653
654
655
# File 'lib/flt/num.rb', line 653

def dup
  self.class.new(self)
end

#elimit=(e) ⇒ Object

Set the exponent limits, according to IEEE 754-2008 if e > 0 it is taken as emax and emin=1-emax if e < 0 it is taken as emin and emax=1-emin



550
551
552
# File 'lib/flt/num.rb', line 550

def elimit=(e)
  @emin, @emax = [e, 1-e].sort
end

#epsilon(sign = +1) ⇒ Object

This is the difference between 1 and the smallest DecNum value greater than 1: (DecNum(1).next_plus - DecNum(1))



992
993
994
995
# File 'lib/flt/num.rb', line 992

def epsilon(sign=+1)
  return exception(InvalidOperation, "Exact context epsilon") if exact?
  Num(sign, 1, 1-precision)
end

#etinyObject

‘tiny’ exponent (emin - precision + 1) is the minimum valid value for the (integral) exponent



537
538
539
# File 'lib/flt/num.rb', line 537

def etiny
  emin - precision + 1
end

#etopObject

top exponent (emax - precision + 1) is the maximum valid value for the (integral) exponent



543
544
545
# File 'lib/flt/num.rb', line 543

def etop
  emax - precision + 1
end

#eval(&blk) ⇒ Object

Evaluate a block under a context (set up the context as a local context)

When we have a context object we can use this instead of using the context method of the numeric class, e.g.:

DecNum.context(context) { ... }

This saves verbosity, specially when numeric class is not fixed, in which case we would have to write:

context.num_class.context(context) { ... }

With this method, we simply write:

context.eval { ... }


456
457
458
459
# File 'lib/flt/num.rb', line 456

def eval(&blk)
  # TODO: consider other names for this method; use ? apply ? local ? with ?
  num_class.context(self, &blk)
end

#exactObject

Returns true if the precision is exact



601
602
603
# File 'lib/flt/num.rb', line 601

def exact
  @exact
end

#exact=(v) ⇒ Object

Enables or disables the exact precision



594
595
596
597
598
# File 'lib/flt/num.rb', line 594

def exact=(v)
  @exact = v
  update_precision
  v
end

#exact?Boolean

Returns true if the precision is exact

Returns:

  • (Boolean)


606
607
608
# File 'lib/flt/num.rb', line 606

def exact?
  @exact
end

#exception(cond, msg = '', *params) ⇒ Object

Raises a flag (unless it is being ignores) and raises and exceptioin if the trap for it is enabled.

Raises:

  • (err.new(*params))


666
667
668
669
670
671
672
# File 'lib/flt/num.rb', line 666

def exception(cond, msg='', *params)
  err = (CONDITION_MAP[cond] || cond)
  return err.handle(self, *params) if @ignored_flags[err]
  @flags << err # @flags[err] = true
  return cond.handle(self, *params) if !@traps[err]
  raise err.new(*params), msg
end

#exp(x) ⇒ Object

Exponential function: e**x



725
726
727
# File 'lib/flt/num.rb', line 725

def exp(x)
  _convert(x).exp(self)
end

#exponent(x) ⇒ Object



1135
1136
1137
# File 'lib/flt/num.rb', line 1135

def exponent(x)
  _convert(x).exponent
end

#fma(x, y, z) ⇒ Object

Fused multiply-add.

Computes (x*y+z) with no rounding of the intermediate product x*y.



867
868
869
# File 'lib/flt/num.rb', line 867

def fma(x,y,z)
  _convert(x).fma(y,z,self)
end

#half_epsilon(sign = +1) ⇒ Object

This is the maximum relative error corresponding to 1/2 ulp:

(radix/2)*radix**(-precision) == epsilon/2

This is called “machine epsilon” in Goldberg’s “What Every Computer Scientist…”



1026
1027
1028
# File 'lib/flt/num.rb', line 1026

def half_epsilon(sign=+1)
  Num(sign, num_class.radix/2, -precision)
end

#ignore_all_flagsObject

Ignore all flags if they are raised



519
520
521
522
# File 'lib/flt/num.rb', line 519

def ignore_all_flags
  #@ignored_flags << EXCEPTIONS
  @ignored_flags.set!
end

#ignore_flags(*flags) ⇒ Object

Ignore a specified set of flags if they are raised



525
526
527
528
# File 'lib/flt/num.rb', line 525

def ignore_flags(*flags)
  #@ignored_flags << flags
  @ignored_flags.set(*flags)
end

#infinite?(x) ⇒ Boolean

Returns:

  • (Boolean)


1143
1144
1145
# File 'lib/flt/num.rb', line 1143

def infinite?(x)
  _convert(x).infinite?
end

#inspectObject



1034
1035
1036
1037
1038
1039
# File 'lib/flt/num.rb', line 1034

def inspect
  class_name = self.class.to_s.split('::').last
  "<#{class_name}:\n" +
  instance_variables.map { |v| "  #{v}: #{instance_variable_get(v).inspect}"}.join("\n") +
  ">\n"
end

#int_div_radix_power(x, n) ⇒ Object

Divide by an integral power of the base: x/(radix**n) for x,n integer; returns an integer.



505
506
507
# File 'lib/flt/num.rb', line 505

def int_div_radix_power(x,n)
  @num_class.int_div_radix_power(x,n)
end

#int_mult_radix_power(x, n) ⇒ Object

Multiply by an integral power of the base: x*(radix**n) for x,n integer; returns an integer.



499
500
501
# File 'lib/flt/num.rb', line 499

def int_mult_radix_power(x,n)
  @num_class.int_mult_radix_power(x,n)
end

#int_radix_power(n) ⇒ Object

Integral power of the base: radix**n for integer n; returns an integer.



493
494
495
# File 'lib/flt/num.rb', line 493

def int_radix_power(n)
  @num_class.int_radix_power(n)
end

#ln(x) ⇒ Object

Returns the natural (base e) logarithm



730
731
732
# File 'lib/flt/num.rb', line 730

def ln(x)
  _convert(x).ln(self)
end

#log(x, base = nil) ⇒ Object

Ruby-style log function: arbitrary base logarithm which defaults to natural logarithm



735
736
737
# File 'lib/flt/num.rb', line 735

def log(x, base=nil)
  _convert(x).log(base, self)
end

#log10(x) ⇒ Object

Returns the base 10 logarithm



715
716
717
# File 'lib/flt/num.rb', line 715

def log10(x)
  _convert(x).log10(self)
end

#log2(x) ⇒ Object

Returns the base 2 logarithm



720
721
722
# File 'lib/flt/num.rb', line 720

def log2(x)
  _convert(x).log10(self)
end

#logb(x) ⇒ Object

Adjusted exponent of x returned as a DecNum value.



774
775
776
# File 'lib/flt/num.rb', line 774

def logb(x)
  _convert(x).logb(self)
end

#math(*parameters, &blk) ⇒ Object

Evalute a block under a context (set up the context as a local context) and inject the context methods (math and otherwise) into the block scope.

This allows the use of regular algebraic notations for math functions, e.g. exp(x) instead of x.exp



466
467
468
469
470
471
472
473
474
475
476
# File 'lib/flt/num.rb', line 466

def math(*parameters, &blk)
  # TODO: consider renaming this to eval
  num_class.context(self) do
    if parameters.empty?
      num_class.context.instance_eval &blk
    else
      # needs instance_exe (available in Ruby 1.9, ActiveRecord; TODO: include implementation here)
      num_class.context.instance_exec *parameters, &blk
    end
  end
end

#maximum_coefficientObject

Maximum integral significand value for numbers using this context’s precision.



1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/flt/num.rb', line 1042

def maximum_coefficient
  if exact?
    exception(InvalidOperation, 'Exact maximum coefficient')
    nil
  else
    num_class.int_radix_power(precision)-1
  end
end

#maximum_finite(sign = +1) ⇒ Object

Maximum finite number



963
964
965
966
967
968
# File 'lib/flt/num.rb', line 963

def maximum_finite(sign=+1)
  return exception(InvalidOperation, "Exact context maximum finite value") if exact?
  # equals Num(+1, 1, emax+1) - Num(+1, 1, etop)
  # equals Num.infinity.next_minus(self)
  Num(sign, num_class.int_radix_power(precision)-1, etop)
end

#maximum_nan_diagnostic_digitsObject

Maximum number of diagnostic digits in NaNs for numbers using this context’s precision.



1062
1063
1064
1065
1066
1067
1068
# File 'lib/flt/num.rb', line 1062

def maximum_nan_diagnostic_digits
  if exact?
    nil # ?
  else
    precision - (clamp ? 1 : 0)
  end
end

#maximum_subnormal(sign = +1) ⇒ Object

Maximum subnormal number



978
979
980
981
982
# File 'lib/flt/num.rb', line 978

def maximum_subnormal(sign=+1)
  return exception(InvalidOperation, "Exact context maximum subnormal value") if exact?
  # equals mininum_normal.next_minus(self)
  Num(sign, num_class.int_radix_power(precision-1)-1, etiny)
end

#minimum_nonzero(sign = +1) ⇒ Object

Minimum nonzero positive number (minimum positive subnormal)



985
986
987
988
# File 'lib/flt/num.rb', line 985

def minimum_nonzero(sign=+1)
  return exception(InvalidOperation, "Exact context minimum nonzero value") if exact?
  Num(sign, 1, etiny)
end

#minimum_normal(sign = +1) ⇒ Object

Minimum positive normal number



971
972
973
974
975
# File 'lib/flt/num.rb', line 971

def minimum_normal(sign=+1)
  return exception(InvalidOperation, "Exact context maximum normal value") if exact?
  #Num(sign, 1, emin).normalize(self)
  Num(sign, minimum_normalized_coefficient, etiny)
end

#minimum_normalized_coefficientObject

Minimum value of a normalized coefficient (normalized unit)



1052
1053
1054
1055
1056
1057
1058
1059
# File 'lib/flt/num.rb', line 1052

def minimum_normalized_coefficient
  if exact?
    exception(InvalidOperation, 'Exact maximum coefficient')
    nil
  else
    num_class.int_radix_power(precision-1)
  end
end

#minus(x) ⇒ Object

Unary prefix minus operator



705
706
707
# File 'lib/flt/num.rb', line 705

def minus(x)
  _convert(x)._neg(self)
end

#modulo(x, y) ⇒ Object

Ruby-style modulo: x - y*div(x,y)



833
834
835
# File 'lib/flt/num.rb', line 833

def modulo(x,y)
  _convert(x).modulo(y,self)
end

#multiply(x, y) ⇒ Object

Multiplication of two decimal numbers



685
686
687
# File 'lib/flt/num.rb', line 685

def multiply(x,y)
  _convert(x).multiply(y,self)
end

#nan?(x) ⇒ Boolean

Returns:

  • (Boolean)


1139
1140
1141
# File 'lib/flt/num.rb', line 1139

def nan?(x)
  _convert(x).nan?
end

#next_minus(x) ⇒ Object

Returns the largest representable number smaller than x.



933
934
935
# File 'lib/flt/num.rb', line 933

def next_minus(x)
  _convert(x).next_minus(self)
end

#next_plus(x) ⇒ Object

Returns the smallest representable number larger than x.



938
939
940
# File 'lib/flt/num.rb', line 938

def next_plus(x)
  _convert(x).next_plus(self)
end

#next_toward(x, y) ⇒ Object

Returns the number closest to x, in the direction towards y.

The result is the closest representable number to x (excluding x) that is in the direction towards y, unless both have the same value. If the two operands are numerically equal, then the result is a copy of x with the sign set to be the same as the sign of y.



949
950
951
# File 'lib/flt/num.rb', line 949

def next_toward(x, y)
  _convert(x).next_toward(y, self)
end

#normal?(x) ⇒ Boolean

Is a normal number?

Returns:

  • (Boolean)


806
807
808
# File 'lib/flt/num.rb', line 806

def normal?(x)
  _convert(x).normal?(self)
end

#normalize(x) ⇒ Object

Normalizes (changes quantum) so that the coefficient has precision digits, unless it is subnormal. For surnormal numbers the Subnormal flag is raised an a subnormal is returned with the smallest possible exponent.

This is different from reduce GDAS function which was formerly called normalize, and corresponds to the classic meaning of floating-point normalization.

Note that the number is also rounded (precision is reduced) if it had more precision than the context.



769
770
771
# File 'lib/flt/num.rb', line 769

def normalize(x)
  _convert(x).normalize(self)
end

#normalized_integral_exponent(x) ⇒ Object

Exponent in relation to the significand as an integer normalized to precision digits. (minimum exponent)



787
788
789
790
# File 'lib/flt/num.rb', line 787

def normalized_integral_exponent(x)
  x = _convert(x)
  x.exponent - (precision - x.number_of_digits)
end

#normalized_integral_significand(x) ⇒ Object

Significand normalized to precision digits x == normalized_integral_significand(x) * radix**(normalized_integral_exponent)



794
795
796
797
# File 'lib/flt/num.rb', line 794

def normalized_integral_significand(x)
  x = _convert(x)
  x.coefficient*(num_class.int_radix_power(precision - x.number_of_digits))
end

#Num(*args) ⇒ Object

Constructor for the associated numeric class



484
485
486
# File 'lib/flt/num.rb', line 484

def Num(*args)
  num_class.Num(*args)
end

#num_classObject

This gives access to the numeric class (Flt::Num-derived) this context is for.



479
480
481
# File 'lib/flt/num.rb', line 479

def num_class
  @num_class
end

#number_class(x) ⇒ Object

Classifies a number as one of ‘sNaN’, ‘NaN’, ‘-Infinity’, ‘-Normal’, ‘-Subnormal’, ‘-Zero’,

'+Zero', '+Subnormal', '+Normal', '+Infinity'


818
819
820
# File 'lib/flt/num.rb', line 818

def number_class(x)
  _convert(x).number_class(self)
end

#plus(x) ⇒ Object

Unary prefix plus operator



700
701
702
# File 'lib/flt/num.rb', line 700

def plus(x)
  _convert(x).plus(self)
end

#power(x, y, modulo = nil) ⇒ Object

Power. See DecNum#power()



710
711
712
# File 'lib/flt/num.rb', line 710

def power(x,y,modulo=nil)
  _convert(x).power(y,modulo,self)
end

#precObject

synonym for precision()



565
566
567
# File 'lib/flt/num.rb', line 565

def prec
  self.precision
end

#prec=(n) ⇒ Object

synonym for precision=()



570
571
572
# File 'lib/flt/num.rb', line 570

def prec=(n)
  self.precision = n
end

#precisionObject

Number of digits of precision



589
590
591
# File 'lib/flt/num.rb', line 589

def precision
  @precision
end

#precision=(n) ⇒ Object

Set the number of digits of precision. If 0 is set the precision turns to be exact.



581
582
583
584
585
586
# File 'lib/flt/num.rb', line 581

def precision=(n)
  @precision = n
  @exact = false unless n==0
  update_precision
  n
end

#quantize(x, y, watch_exp = true) ⇒ Object

Quantize x so its exponent is the same as that of y.



902
903
904
# File 'lib/flt/num.rb', line 902

def quantize(x, y, watch_exp=true)
  _convert(x).quantize(y, self, watch_exp)
end

#radixObject



488
489
490
# File 'lib/flt/num.rb', line 488

def radix
  @num_class.radix
end

#reduce(x) ⇒ Object

Reduces an operand to its simplest form by removing trailing 0s and incrementing the exponent. (formerly called normalize in GDAS)



757
758
759
# File 'lib/flt/num.rb', line 757

def reduce(x)
  _convert(x).reduce(self)
end

#regard_flags(*flags) ⇒ Object

Stop ignoring a set of flags, if they are raised



531
532
533
# File 'lib/flt/num.rb', line 531

def regard_flags(*flags)
  @ignored_flags.clear(*flags)
end

#remainder(x, y) ⇒ Object

General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y)



848
849
850
# File 'lib/flt/num.rb', line 848

def remainder(x,y)
  _convert(x).remainder(y,self)
end

#remainder_near(x, y) ⇒ Object

General Decimal Arithmetic Specification remainder-near

x - y*round_half_even(x/y)


854
855
856
# File 'lib/flt/num.rb', line 854

def remainder_near(x,y)
  _convert(x).remainder_near(y,self)
end

#rescale(x, exp, watch_exp = true) ⇒ Object

Rescale x so that the exponent is exp, either by padding with zeros or by truncating digits.



897
898
899
# File 'lib/flt/num.rb', line 897

def rescale(x, exp, watch_exp=true)
  _convert(x).rescale(exp, self, watch_exp)
end

#same_quantum?(x, y) ⇒ Boolean

Return true if x and y have the same exponent.

If either operand is a special value, the following rules are used:

  • return true if both operands are infinities

  • return true if both operands are NaNs

  • otherwise, return false.

Returns:

  • (Boolean)


912
913
914
# File 'lib/flt/num.rb', line 912

def same_quantum?(x,y)
  _convert(x).same_quantum?(y)
end

#scaleb(x, y) ⇒ Object

Adds the second value to the exponent of the first: x*(radix**y)

y must be an integer



781
782
783
# File 'lib/flt/num.rb', line 781

def scaleb(x, y)
  _convert(x).scaleb(y,self)
end

#sign(x) ⇒ Object



1127
1128
1129
# File 'lib/flt/num.rb', line 1127

def sign(x)
  _convert(x).sign
end

#split(x) ⇒ Object

Simply calls x.split; implemented to ease handling Float and BigDecimal as Nums withoug having to add methods like split to those classes.



1119
1120
1121
# File 'lib/flt/num.rb', line 1119

def split(x)
  _convert(x).split
end

#sqrt(x) ⇒ Object

Square root of a decimal number



823
824
825
# File 'lib/flt/num.rb', line 823

def sqrt(x)
  _convert(x).sqrt(self)
end

#strict_epsilon(sign = +1) ⇒ Object

The strict epsilon is the smallest value that produces something different from 1 wehen added to 1. It may be smaller than the general epsilon, because of the particular rounding rules used.



1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
# File 'lib/flt/num.rb', line 1000

def strict_epsilon(sign=+1)
  return exception(InvalidOperation, "Exact context strict epsilon") if exact?
  # assume radix is even (num_class.radix%2 == 0)
  case rounding
  when :down, :floor
    # largest epsilon: 0.0...10 (precision digits shown to the right of the decimal point)
    exp = 1-precision
    coeff = 1
  when :half_even, :half_down
    # next largest:    0.0...050...1 (+precision-1 additional digits here)
    exp = 1-2*precision
    coeff = 1 + num_class.int_radix_power(precision)/2
  when :half_up
    # next largest:    0.0...05 (precision digits shown to the right of the decimal point)
    exp = 1-2*precision
    coeff = num_class.int_radix_power(precision)/2
  when :up, :ceiling, :up05
    # smallest epsilon
    return minimum_nonzero(sign)
  end
  return Num(sign, coeff, exp)
end

#subnormal?(x) ⇒ Boolean

Is a subnormal number?

Returns:

  • (Boolean)


811
812
813
# File 'lib/flt/num.rb', line 811

def subnormal?(x)
  _convert(x).subnormal?(self)
end

#subtract(x, y) ⇒ Object

Subtraction of two decimal numbers



680
681
682
# File 'lib/flt/num.rb', line 680

def subtract(x,y)
  _convert(x).subtract(y,self)
end

#to_eng_string(x) ⇒ Object

Converts a number to a string, using engineering notation



750
751
752
# File 'lib/flt/num.rb', line 750

def to_eng_string(x)
  to_string x, true
end

#to_int_scale(x) ⇒ Object



1123
1124
1125
# File 'lib/flt/num.rb', line 1123

def to_int_scale(x)
  _convert(x).to_int_scale
end

#to_integral_exact(x) ⇒ Object

Rounds to a nearby integer.

See also: DecNum#to_integral_value(), which does exactly the same as this method except that it doesn’t raise Inexact or Rounded.



920
921
922
# File 'lib/flt/num.rb', line 920

def to_integral_exact(x)
  _convert(x).to_integral_exact(self)
end

#to_integral_value(x) ⇒ Object

Rounds to a nearby integerwithout raising inexact, rounded.

See also: DecNum#to_integral_exact(), which does exactly the same as this method except that it may raise Inexact or Rounded.



928
929
930
# File 'lib/flt/num.rb', line 928

def to_integral_value(x)
  _convert(x).to_integral_value(self)
end

#to_normalized_int_scale(x) ⇒ Object

Returns both the (signed) normalized integral significand and the corresponding exponent



800
801
802
803
# File 'lib/flt/num.rb', line 800

def to_normalized_int_scale(x)
  x = _convert(x)
  [x.sign*normalized_integral_significand(x), normalized_integral_exponent(x)]
end

#to_sObject



1030
1031
1032
# File 'lib/flt/num.rb', line 1030

def to_s
  inspect
end

#to_sci_string(x) ⇒ Object

Converts a number to a string, using scientific notation



745
746
747
# File 'lib/flt/num.rb', line 745

def to_sci_string(x)
  to_string x, false
end

#to_string(x, eng = false) ⇒ Object

Converts a number to a string



740
741
742
# File 'lib/flt/num.rb', line 740

def to_string(x, eng=false)
  _convert(x)._fix(self).to_s(eng, self)
end

#ulp(x = nil, mode = :low) ⇒ Object

ulp (unit in the last place) according to the definition proposed by J.M. Muller in “On the definition of ulp(x)” INRIA No. 5504



955
956
957
958
# File 'lib/flt/num.rb', line 955

def ulp(x=nil, mode=:low)
  x ||= 1
  _convert(x).ulp(self, mode)
end

#zero?(x) ⇒ Boolean

Returns:

  • (Boolean)


1147
1148
1149
# File 'lib/flt/num.rb', line 1147

def zero?(x)
  _convert(x).zero?
end