Module: Flock
- Defined in:
- lib/flock.rb,
ext/flock.c
Constant Summary collapse
- METHOD_AVERAGE =
INT2NUM('a')
- METHOD_MEDIAN =
INT2NUM('m')
- METRIC_EUCLIDIAN =
INT2NUM('e')
- METRIC_CITY_BLOCK =
INT2NUM('b')
- METRIC_CORRELATION =
INT2NUM('c')
- METRIC_ABSOLUTE_CORRELATION =
INT2NUM('a')
- METRIC_UNCENTERED_CORRELATION =
INT2NUM('u')
- METRIC_ABSOLUTE_UNCENTERED_CORRELATION =
INT2NUM('x')
- METRIC_SPEARMAN =
INT2NUM('s')
- METRIC_KENDALL =
INT2NUM('k')
Class Method Summary collapse
- .absolute_correlation_distance(vec1, vec2) ⇒ Object
- .absolute_uncentered_correlation_distance(vec1, vec2) ⇒ Object
- .cityblock_distance(vec1, vec2) ⇒ Object
- .correlation_distance(vec1, vec2) ⇒ Object
- .densify(sparse_data, weights = nil) ⇒ Object
- .euclidian_distance(vec1, vec2) ⇒ Object
- .kendall_distance(vec1, vec2) ⇒ Object
- .kmeans(*args) ⇒ Object
- .self_organizing_map(*args) ⇒ Object
- .sparse_array_to_data(sparse_data) ⇒ Object
- .sparse_hash_to_data(sparse_data) ⇒ Object
- .sparse_kmeans(size, sparse_data, options = {}) ⇒ Object
- .sparse_self_organizing_map(nx, ny, sparse_data, options = {}) ⇒ Object
- .sparse_treecluster(size, sparse_data, options = {}) ⇒ Object
- .spearman_distance(vec1, vec2) ⇒ Object
- .treecluster(*args) ⇒ Object
- .uncentered_correlation_distance(vec1, vec2) ⇒ Object
Class Method Details
.absolute_correlation_distance(vec1, vec2) ⇒ Object
410 411 412 |
# File 'ext/flock.c', line 410 VALUE rb_acorrelation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, acorrelation); } |
.absolute_uncentered_correlation_distance(vec1, vec2) ⇒ Object
414 415 416 |
# File 'ext/flock.c', line 414 VALUE rb_uacorrelation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, uacorrelation); } |
.cityblock_distance(vec1, vec2) ⇒ Object
398 399 400 |
# File 'ext/flock.c', line 398 VALUE rb_cityblock(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, cityblock); } |
.correlation_distance(vec1, vec2) ⇒ Object
402 403 404 |
# File 'ext/flock.c', line 402 VALUE rb_correlation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, correlation); } |
.densify(sparse_data, weights = nil) ⇒ Object
24 25 26 27 28 29 30 31 32 33 34 |
# File 'lib/flock.rb', line 24 def self.densify sparse_data, weights = nil dims, data = sparse_data[0].kind_of?(Array) ? sparse_array_to_data(sparse_data) : sparse_hash_to_data(sparse_data) if weights resampled = Array.new(dims.size) {1} weights.each {|k,v| resampled[dims[k]] = v } weights = resampled end [data, weights] end |
.euclidian_distance(vec1, vec2) ⇒ Object
394 395 396 |
# File 'ext/flock.c', line 394 VALUE rb_euclid(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, euclid); } |
.kendall_distance(vec1, vec2) ⇒ Object
422 423 424 |
# File 'ext/flock.c', line 422 VALUE rb_kendall(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, kendall); } |
.kmeans(*args) ⇒ Object
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# File 'ext/flock.c', line 24 VALUE rb_kmeans(int argc, VALUE *argv, VALUE self) { VALUE size, data, mask, weights, ; rb_scan_args(argc, argv, "22", &size, &data, &mask, &); if (TYPE(data) != T_ARRAY) rb_raise(rb_eArgError, "data should be an array of arrays"); if (!NIL_P(mask) && TYPE(mask) != T_ARRAY) rb_raise(rb_eArgError, "mask should be an array of arrays"); if (NIL_P(size) || NUM2INT(rb_Integer(size)) > RARRAY_LEN(data)) rb_raise(rb_eArgError, "size should be > 0 and <= data size"); int transpose = opt_int_value(, "transpose", 0); int npass = opt_int_value(, "iterations", 1000); // a = average, m = means int method = opt_int_value(, "method", 'a'); // e = euclidian, // b = city-block distance // c = correlation // a = absolute value of the correlation // u = uncentered correlation // x = absolute uncentered correlation // s = spearman's rank correlation // k = kendall's tau int dist = opt_int_value(, "metric", 'e'); int i,j; int nrows = RARRAY_LEN(data); int ncols = RARRAY_LEN(rb_ary_entry(data, 0)); int nsets = NUM2INT(rb_Integer(size)); double **cdata = (double**)malloc(sizeof(double*)*nrows); int **cmask = (int **)malloc(sizeof(int *)*nrows); double *cweights = (double *)malloc(sizeof(double )*ncols); double **ccentroid; int *ccluster, **ccentroid_mask, dimx = nrows, dimy = ncols, cdimx = nsets, cdimy = ncols; for (i = 0; i < nrows; i++) { cdata[i] = (double*)malloc(sizeof(double)*ncols); cmask[i] = (int *)malloc(sizeof(int )*ncols); for (j = 0; j < ncols; j++) { cdata[i][j] = NUM2DBL(rb_Float(rb_ary_entry(rb_ary_entry(data, i), j))); cmask[i][j] = NIL_P(mask) ? 1 : NUM2INT(rb_Integer(rb_ary_entry(rb_ary_entry(mask, i), j))); } } weights = NIL_P() ? Qnil : rb_hash_aref(, ID2SYM(rb_intern("weights"))); for (i = 0; i < ncols; i++) { cweights[i] = NIL_P(weights) ? 1.0 : NUM2DBL(rb_Float(rb_ary_entry(weights, i))); } if (transpose) { dimx = ncols; dimy = nrows; cdimx = nrows; cdimy = nsets; } ccluster = (int *)malloc(sizeof(int )*dimx); ccentroid = (double**)malloc(sizeof(double*)*cdimx); ccentroid_mask = (int **)malloc(sizeof(int *)*cdimx); for (i = 0; i < cdimx; i++) { ccentroid[i] = (double*)malloc(sizeof(double)*cdimy); ccentroid_mask[i] = (int *)malloc(sizeof(int )*cdimy); } int ifound; double error; kcluster(nsets, nrows, ncols, cdata, cmask, cweights, transpose, npass, method, dist, ccluster, &error, &ifound); getclustercentroids(nsets, nrows, ncols, cdata, cmask, ccluster, ccentroid, ccentroid_mask, transpose, method); VALUE result = rb_hash_new(); VALUE cluster = rb_ary_new(); VALUE centroid = rb_ary_new(); for (i = 0; i < dimx; i++) rb_ary_push(cluster, INT2NUM(ccluster[i])); for (i = 0; i < cdimx; i++) { VALUE point = rb_ary_new(); for (j = 0; j < cdimy; j++) rb_ary_push(point, DBL2NUM(ccentroid[i][j])); rb_ary_push(centroid, point); } rb_hash_aset(result, ID2SYM(rb_intern("cluster")), cluster); rb_hash_aset(result, ID2SYM(rb_intern("centroid")), centroid); rb_hash_aset(result, ID2SYM(rb_intern("error")), DBL2NUM(error)); rb_hash_aset(result, ID2SYM(rb_intern("repeated")), INT2NUM(ifound)); for (i = 0; i < nrows; i++) { free(cdata[i]); free(cmask[i]); } for (i = 0; i < cdimx; i++) { free(ccentroid[i]); free(ccentroid_mask[i]); } free(cdata); free(cmask); free(ccentroid); free(ccentroid_mask); free(cweights); free(ccluster); return result; } |
.self_organizing_map(*args) ⇒ Object
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# File 'ext/flock.c', line 140 VALUE rb_som(int argc, VALUE *argv, VALUE self) { VALUE nx, ny, data, mask, weights, ; rb_scan_args(argc, argv, "32", &nx, &ny, &data, &mask, &); if (TYPE(data) != T_ARRAY) rb_raise(rb_eArgError, "data should be an array of arrays"); if (!NIL_P(mask) && TYPE(mask) != T_ARRAY) rb_raise(rb_eArgError, "mask should be an array of arrays"); if (NIL_P(nx) || NUM2INT(rb_Integer(nx)) <= 0) rb_raise(rb_eArgError, "nx should be > 0"); if (NIL_P(ny) || NUM2INT(rb_Integer(ny)) <= 0) rb_raise(rb_eArgError, "ny should be > 0"); int nxgrid = NUM2INT(rb_Integer(nx)); int nygrid = NUM2INT(rb_Integer(ny)); int transpose = opt_int_value(, "transpose", 0); int npass = opt_int_value(, "iterations", 1000); // e = euclidian, // b = city-block distance // c = correlation // a = absolute value of the correlation // u = uncentered correlation // x = absolute uncentered correlation // s = spearman's rank correlation // k = kendall's tau int dist = opt_int_value(, "metric", 'e'); double tau = opt_double_value(, "tau", 1.0); int i, j, k; int nrows = RARRAY_LEN(data); int ncols = RARRAY_LEN(rb_ary_entry(data, 0)); double **cdata = (double**)malloc(sizeof(double*)*nrows); int **cmask = (int **)malloc(sizeof(int *)*nrows); double *cweights = (double *)malloc(sizeof(double )*ncols); int **ccluster; double ***ccelldata; int dimx = nrows, dimy = ncols; if (transpose) { dimx = ncols; dimy = nrows; } ccluster = (int **)malloc(sizeof(int*)*dimx); for (i = 0; i < dimx; i++) ccluster[i] = (int*)malloc(sizeof(int)*2); for (i = 0; i < nrows; i++) { cdata[i] = (double*)malloc(sizeof(double)*ncols); cmask[i] = (int *)malloc(sizeof(int )*ncols); for (j = 0; j < ncols; j++) { cdata[i][j] = NUM2DBL(rb_Float(rb_ary_entry(rb_ary_entry(data, i), j))); cmask[i][j] = NIL_P(mask) ? 1 : NUM2INT(rb_Integer(rb_ary_entry(rb_ary_entry(mask, i), j))); } } weights = NIL_P() ? Qnil : rb_hash_aref(, ID2SYM(rb_intern("weights"))); for (i = 0; i < ncols; i++) { cweights[i] = NIL_P(weights) ? 1.0 : NUM2DBL(rb_Float(rb_ary_entry(weights, i))); } ccelldata = (double***)malloc(sizeof(double**)*nxgrid); for (i = 0; i < nxgrid; i++) { ccelldata[i] = (double **)malloc(sizeof(double*)*nygrid); for (j = 0; j < nygrid; j++) ccelldata[i][j] = (double *)malloc(sizeof(double)*dimy); } somcluster(nrows, ncols, cdata, cmask, cweights, transpose, nxgrid, nygrid, tau, npass, dist, ccelldata, ccluster); VALUE result = rb_hash_new(); VALUE cluster = rb_ary_new(); VALUE centroid = rb_ary_new(); for (i = 0; i < dimx; i++) { VALUE gridpoint = rb_ary_new(); rb_ary_push(gridpoint, INT2NUM(ccluster[i][0])); rb_ary_push(gridpoint, INT2NUM(ccluster[i][1])); rb_ary_push(cluster, gridpoint); } for (i = 0; i < nxgrid; i++) { for (j = 0; j < nygrid; j++) { VALUE point = rb_ary_new(); for (k = 0; k < dimy; k++) rb_ary_push(point, DBL2NUM(ccelldata[i][j][k])); rb_ary_push(centroid, point); } } rb_hash_aset(result, ID2SYM(rb_intern("cluster")), cluster); rb_hash_aset(result, ID2SYM(rb_intern("centroid")), centroid); for (i = 0; i < nrows; i++) { free(cdata[i]); free(cmask[i]); } for (i = 0; i < dimx; i++) free(ccluster[i]); for (i = 0; i < nxgrid; i++) { for (j = 0; j < nygrid; j++) free(ccelldata[i][j]); free(ccelldata[i]); } free(cdata); free(cmask); free(ccelldata); free(cweights); free(ccluster); return result; } |
.sparse_array_to_data(sparse_data) ⇒ Object
14 15 16 17 18 19 20 21 22 |
# File 'lib/flock.rb', line 14 def self.sparse_array_to_data sparse_data dims = Hash[sparse_data.flatten.uniq.map.with_index{|k,v| [k,v]}] data = sparse_data.map do |sv| vector = Array.new(dims.size) {0} sv.each {|k| vector[dims[k]] = 1 } vector end [dims,data] end |
.sparse_hash_to_data(sparse_data) ⇒ Object
4 5 6 7 8 9 10 11 12 |
# File 'lib/flock.rb', line 4 def self.sparse_hash_to_data sparse_data dims = Hash[sparse_data.map(&:keys).flatten.uniq.map.with_index{|k,v| [k,v]}] data = sparse_data.map do |sv| vector = Array.new(dims.size) {0} sv.each {|k,v| vector[dims[k]] = v } vector end [dims,data] end |
.sparse_kmeans(size, sparse_data, options = {}) ⇒ Object
36 37 38 39 |
# File 'lib/flock.rb', line 36 def self.sparse_kmeans size, sparse_data, = {} data, [:weights] = densify(sparse_data, [:weights]) kmeans(size, data, nil, ) end |
.sparse_self_organizing_map(nx, ny, sparse_data, options = {}) ⇒ Object
41 42 43 44 |
# File 'lib/flock.rb', line 41 def self.sparse_self_organizing_map nx, ny, sparse_data, = {} data, [:weights] = densify(sparse_data, [:weights]) self_organizing_map(nx, ny, data, nil, ) end |
.sparse_treecluster(size, sparse_data, options = {}) ⇒ Object
46 47 48 49 |
# File 'lib/flock.rb', line 46 def self.sparse_treecluster size, sparse_data, = {} data, [:weights] = densify(sparse_data, [:weights]) treecluster(size, data, nil, ) end |
.spearman_distance(vec1, vec2) ⇒ Object
418 419 420 |
# File 'ext/flock.c', line 418 VALUE rb_spearman(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, spearman); } |
.treecluster(*args) ⇒ Object
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# File 'ext/flock.c', line 263 VALUE rb_treecluster(int argc, VALUE *argv, VALUE self) { VALUE size, data, mask, weights, ; rb_scan_args(argc, argv, "22", &size, &data, &mask, &); if (TYPE(data) != T_ARRAY) rb_raise(rb_eArgError, "data should be an array of arrays"); if (!NIL_P(mask) && TYPE(mask) != T_ARRAY) rb_raise(rb_eArgError, "mask should be an array of arrays"); if (NIL_P(size) || NUM2INT(rb_Integer(size)) > RARRAY_LEN(data)) rb_raise(rb_eArgError, "size should be > 0 and <= data size"); int transpose = opt_int_value(, "transpose", 0); // a = average, m = means int method = opt_int_value(, "method", 'a'); // e = euclidian, // b = city-block distance // c = correlation // a = absolute value of the correlation // u = uncentered correlation // x = absolute uncentered correlation // s = spearman's rank correlation // k = kendall's tau int dist = opt_int_value(, "metric", 'e'); int i,j; int nrows = RARRAY_LEN(data); int ncols = RARRAY_LEN(rb_ary_entry(data, 0)); int nsets = NUM2INT(rb_Integer(size)); double **cdata = (double**)malloc(sizeof(double*)*nrows); int **cmask = (int **)malloc(sizeof(int *)*nrows); double *cweights = (double *)malloc(sizeof(double )*ncols); int *ccluster, dimx = nrows, dimy = ncols; for (i = 0; i < nrows; i++) { cdata[i] = (double*)malloc(sizeof(double)*ncols); cmask[i] = (int *)malloc(sizeof(int )*ncols); for (j = 0; j < ncols; j++) { cdata[i][j] = NUM2DBL(rb_Float(rb_ary_entry(rb_ary_entry(data, i), j))); cmask[i][j] = NIL_P(mask) ? 1 : NUM2INT(rb_Integer(rb_ary_entry(rb_ary_entry(mask, i), j))); } } weights = NIL_P() ? Qnil : rb_hash_aref(, ID2SYM(rb_intern("weights"))); for (i = 0; i < ncols; i++) { cweights[i] = NIL_P(weights) ? 1.0 : NUM2DBL(rb_Float(rb_ary_entry(weights, i))); } if (transpose) { dimx = ncols; dimy = nrows; } ccluster = (int *)malloc(sizeof(int)*dimx); Node *tree = treecluster(nrows, ncols, cdata, cmask, cweights, transpose, dist, method, 0); VALUE result = Qnil, cluster; if (tree) { cuttree(dimx, tree, nsets, ccluster); result = rb_hash_new(); cluster = rb_ary_new(); for (i = 0; i < dimx; i++) rb_ary_push(cluster, INT2NUM(ccluster[i])); rb_hash_aset(result, ID2SYM(rb_intern("cluster")), cluster); } for (i = 0; i < nrows; i++) { free(cdata[i]); free(cmask[i]); } free(cdata); free(cmask); free(cweights); free(ccluster); if (tree) free(tree); else rb_raise(rb_eNoMemError, "tree cluster ran out of memory"); return result; } |
.uncentered_correlation_distance(vec1, vec2) ⇒ Object
406 407 408 |
# File 'ext/flock.c', line 406 VALUE rb_ucorrelation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, ucorrelation); } |