Module: Flock
- Defined in:
- lib/flock.rb,
ext/flock.c
Constant Summary collapse
- METHOD_AVERAGE =
INT2NUM('a')
- METHOD_MEDIAN =
INT2NUM('m')
- METRIC_EUCLIDIAN =
INT2NUM('e')
- METRIC_CITY_BLOCK =
INT2NUM('b')
- METRIC_CORRELATION =
INT2NUM('c')
- METRIC_ABSOLUTE_CORRELATION =
INT2NUM('a')
- METRIC_UNCENTERED_CORRELATION =
INT2NUM('u')
- METRIC_ABSOLUTE_UNCENTERED_CORRELATION =
INT2NUM('x')
- METRIC_SPEARMAN =
INT2NUM('s')
- METRIC_KENDALL =
INT2NUM('k')
Class Method Summary collapse
- .absolute_correlation_distance(vec1, vec2) ⇒ Object
- .absolute_uncentered_correlation_distance(vec1, vec2) ⇒ Object
- .cityblock_distance(vec1, vec2) ⇒ Object
- .correlation_distance(vec1, vec2) ⇒ Object
- .euclidian_distance(vec1, vec2) ⇒ Object
- .kendall_distance(vec1, vec2) ⇒ Object
- .kmeans(*args) ⇒ Object
- .self_organizing_map(*args) ⇒ Object
- .sparse_array_to_data(sparse_data) ⇒ Object
- .sparse_hash_to_data(sparse_data) ⇒ Object
- .sparse_kmeans(size, sparse_data, options = {}) ⇒ Object
- .sparse_self_organizing_map(nx, ny, sparse_data, options = {}) ⇒ Object
- .spearman_distance(vec1, vec2) ⇒ Object
- .uncentered_correlation_distance(vec1, vec2) ⇒ Object
Class Method Details
.absolute_correlation_distance(vec1, vec2) ⇒ Object
316 317 318 |
# File 'ext/flock.c', line 316 VALUE rb_acorrelation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, acorrelation); } |
.absolute_uncentered_correlation_distance(vec1, vec2) ⇒ Object
320 321 322 |
# File 'ext/flock.c', line 320 VALUE rb_uacorrelation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, uacorrelation); } |
.cityblock_distance(vec1, vec2) ⇒ Object
304 305 306 |
# File 'ext/flock.c', line 304 VALUE rb_cityblock(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, cityblock); } |
.correlation_distance(vec1, vec2) ⇒ Object
308 309 310 |
# File 'ext/flock.c', line 308 VALUE rb_correlation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, correlation); } |
.euclidian_distance(vec1, vec2) ⇒ Object
300 301 302 |
# File 'ext/flock.c', line 300 VALUE rb_euclid(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, euclid); } |
.kendall_distance(vec1, vec2) ⇒ Object
328 329 330 |
# File 'ext/flock.c', line 328 VALUE rb_kendall(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, kendall); } |
.kmeans(*args) ⇒ Object
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# File 'ext/flock.c', line 24 VALUE rb_kmeans(int argc, VALUE *argv, VALUE self) { VALUE size, data, mask, weights, ; rb_scan_args(argc, argv, "22", &size, &data, &mask, &); if (TYPE(data) != T_ARRAY) rb_raise(rb_eArgError, "data should be an array of arrays"); if (!NIL_P(mask) && TYPE(mask) != T_ARRAY) rb_raise(rb_eArgError, "mask should be an array of arrays"); if (NIL_P(size) || NUM2INT(rb_Integer(size)) > RARRAY_LEN(data)) rb_raise(rb_eArgError, "size should be > 0 and <= data size"); int transpose = opt_int_value(, "transpose", 0); int npass = opt_int_value(, "iterations", 1000); // a = average, m = means int method = opt_int_value(, "method", 'a'); // e = euclidian, // b = city-block distance // c = correlation // a = absolute value of the correlation // u = uncentered correlation // x = absolute uncentered correlation // s = spearman's rank correlation // k = kendall's tau int dist = opt_int_value(, "metric", 'e'); int i,j; int nrows = RARRAY_LEN(data); int ncols = RARRAY_LEN(rb_ary_entry(data, 0)); int nsets = NUM2INT(rb_Integer(size)); double **cdata = (double**)malloc(sizeof(double*)*nrows); int **cmask = (int **)malloc(sizeof(int *)*nrows); double *cweights = (double *)malloc(sizeof(double )*ncols); double **ccentroid; int *ccluster, **ccentroid_mask, dimx = nrows, dimy = ncols, cdimx = nsets, cdimy = ncols; for (i = 0; i < nrows; i++) { cdata[i] = (double*)malloc(sizeof(double)*ncols); cmask[i] = (int *)malloc(sizeof(int )*ncols); for (j = 0; j < ncols; j++) { cdata[i][j] = NUM2DBL(rb_Float(rb_ary_entry(rb_ary_entry(data, i), j))); cmask[i][j] = NIL_P(mask) ? 1 : NUM2INT(rb_Integer(rb_ary_entry(rb_ary_entry(mask, i), j))); } } weights = NIL_P() ? Qnil : rb_hash_aref(, ID2SYM(rb_intern("weights"))); for (i = 0; i < ncols; i++) { cweights[i] = NIL_P(weights) ? 1.0 : NUM2DBL(rb_Float(rb_ary_entry(weights, i))); } if (transpose) { dimx = ncols; dimy = nrows; cdimx = nrows; cdimy = nsets; } ccluster = (int *)malloc(sizeof(int )*dimx); ccentroid = (double**)malloc(sizeof(double*)*cdimx); ccentroid_mask = (int **)malloc(sizeof(int *)*cdimx); for (i = 0; i < cdimx; i++) { ccentroid[i] = (double*)malloc(sizeof(double)*cdimy); ccentroid_mask[i] = (int *)malloc(sizeof(int )*cdimy); } int ifound; double error; kcluster(nsets, nrows, ncols, cdata, cmask, cweights, transpose, npass, method, dist, ccluster, &error, &ifound); getclustercentroids(nsets, nrows, ncols, cdata, cmask, ccluster, ccentroid, ccentroid_mask, transpose, method); VALUE result = rb_hash_new(); VALUE cluster = rb_ary_new(); VALUE centroid = rb_ary_new(); for (i = 0; i < dimx; i++) rb_ary_push(cluster, INT2NUM(ccluster[i])); for (i = 0; i < cdimx; i++) { VALUE point = rb_ary_new(); for (j = 0; j < cdimy; j++) rb_ary_push(point, DBL2NUM(ccentroid[i][j])); rb_ary_push(centroid, point); } rb_hash_aset(result, ID2SYM(rb_intern("cluster")), cluster); rb_hash_aset(result, ID2SYM(rb_intern("centroid")), centroid); rb_hash_aset(result, ID2SYM(rb_intern("error")), DBL2NUM(error)); rb_hash_aset(result, ID2SYM(rb_intern("repeated")), INT2NUM(ifound)); for (i = 0; i < nrows; i++) { free(cdata[i]); free(cmask[i]); } for (i = 0; i < cdimx; i++) { free(ccentroid[i]); free(ccentroid_mask[i]); } free(cdata); free(cmask); free(ccentroid); free(ccentroid_mask); free(cweights); free(ccluster); return result; } |
.self_organizing_map(*args) ⇒ Object
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# File 'ext/flock.c', line 140 VALUE rb_som(int argc, VALUE *argv, VALUE self) { VALUE nx, ny, data, mask, weights, ; rb_scan_args(argc, argv, "32", &nx, &ny, &data, &mask, &); if (TYPE(data) != T_ARRAY) rb_raise(rb_eArgError, "data should be an array of arrays"); if (!NIL_P(mask) && TYPE(mask) != T_ARRAY) rb_raise(rb_eArgError, "mask should be an array of arrays"); if (NIL_P(nx) || NUM2INT(rb_Integer(nx)) <= 0) rb_raise(rb_eArgError, "nx should be > 0"); if (NIL_P(ny) || NUM2INT(rb_Integer(ny)) <= 0) rb_raise(rb_eArgError, "ny should be > 0"); int nxgrid = NUM2INT(rb_Integer(nx)); int nygrid = NUM2INT(rb_Integer(ny)); int transpose = opt_int_value(, "transpose", 0); int npass = opt_int_value(, "iterations", 1000); // e = euclidian, // b = city-block distance // c = correlation // a = absolute value of the correlation // u = uncentered correlation // x = absolute uncentered correlation // s = spearman's rank correlation // k = kendall's tau int dist = opt_int_value(, "metric", 'e'); double tau = opt_double_value(, "tau", 1.0); int i, j, k; int nrows = RARRAY_LEN(data); int ncols = RARRAY_LEN(rb_ary_entry(data, 0)); double **cdata = (double**)malloc(sizeof(double*)*nrows); int **cmask = (int **)malloc(sizeof(int *)*nrows); double *cweights = (double *)malloc(sizeof(double )*ncols); int **ccluster; double ***ccelldata; int dimx = nrows, dimy = ncols; if (transpose) { dimx = ncols; dimy = nrows; } ccluster = (int **)malloc(sizeof(int*)*dimx); for (i = 0; i < dimx; i++) ccluster[i] = (int*)malloc(sizeof(int)*2); for (i = 0; i < nrows; i++) { cdata[i] = (double*)malloc(sizeof(double)*ncols); cmask[i] = (int *)malloc(sizeof(int )*ncols); for (j = 0; j < ncols; j++) { cdata[i][j] = NUM2DBL(rb_Float(rb_ary_entry(rb_ary_entry(data, i), j))); cmask[i][j] = NIL_P(mask) ? 1 : NUM2INT(rb_Integer(rb_ary_entry(rb_ary_entry(mask, i), j))); } } weights = NIL_P() ? Qnil : rb_hash_aref(, ID2SYM(rb_intern("weights"))); for (i = 0; i < ncols; i++) { cweights[i] = NIL_P(weights) ? 1.0 : NUM2DBL(rb_Float(rb_ary_entry(weights, i))); } ccelldata = (double***)malloc(sizeof(double**)*nxgrid); for (i = 0; i < nxgrid; i++) { ccelldata[i] = (double **)malloc(sizeof(double*)*nygrid); for (j = 0; j < nygrid; j++) ccelldata[i][j] = (double *)malloc(sizeof(double)*dimy); } somcluster(nrows, ncols, cdata, cmask, cweights, transpose, nxgrid, nygrid, tau, npass, dist, ccelldata, ccluster); VALUE result = rb_hash_new(); VALUE cluster = rb_ary_new(); VALUE centroid = rb_ary_new(); for (i = 0; i < dimx; i++) rb_ary_push(cluster, INT2NUM(ccluster[i][0] * nxgrid + ccluster[i][1])); for (i = 0; i < nxgrid; i++) { for (j = 0; j < nygrid; j++) { VALUE point = rb_ary_new(); for (k = 0; k < dimy; k++) rb_ary_push(point, DBL2NUM(ccelldata[i][j][k])); rb_ary_push(centroid, point); } } rb_hash_aset(result, ID2SYM(rb_intern("cluster")), cluster); rb_hash_aset(result, ID2SYM(rb_intern("centroid")), centroid); for (i = 0; i < nrows; i++) { free(cdata[i]); free(cmask[i]); } for (i = 0; i < dimx; i++) free(ccluster[i]); for (i = 0; i < nxgrid; i++) { for (j = 0; j < nygrid; j++) free(ccelldata[i][j]); free(ccelldata[i]); } free(cdata); free(cmask); free(ccelldata); free(cweights); free(ccluster); return result; } |
.sparse_array_to_data(sparse_data) ⇒ Object
14 15 16 17 18 19 20 21 22 |
# File 'lib/flock.rb', line 14 def self.sparse_array_to_data sparse_data dims = Hash[sparse_data.flatten.uniq.map.with_index{|k,v| [k,v]}] data = sparse_data.map do |sv| vector = Array.new(dims.size) {0} sv.each {|k| vector[dims[k]] = 1 } vector end [dims,data] end |
.sparse_hash_to_data(sparse_data) ⇒ Object
4 5 6 7 8 9 10 11 12 |
# File 'lib/flock.rb', line 4 def self.sparse_hash_to_data sparse_data dims = Hash[sparse_data.map(&:keys).flatten.uniq.map.with_index{|k,v| [k,v]}] data = sparse_data.map do |sv| vector = Array.new(dims.size) {0} sv.each {|k,v| vector[dims[k]] = v } vector end [dims,data] end |
.sparse_kmeans(size, sparse_data, options = {}) ⇒ Object
24 25 26 27 28 29 30 31 32 33 34 |
# File 'lib/flock.rb', line 24 def self.sparse_kmeans size, sparse_data, = {} dims, data = sparse_data[0].kind_of?(Array) ? sparse_array_to_data(sparse_data) : sparse_hash_to_data(sparse_data) if .key?(:weights) weights = Array.new(dims.size) {1} [:weights].each {|k,v| weights[dims[k]] = v } [:weights] = weights end kmeans(size, data, nil, ) end |
.sparse_self_organizing_map(nx, ny, sparse_data, options = {}) ⇒ Object
36 37 38 39 40 41 42 43 44 45 46 |
# File 'lib/flock.rb', line 36 def self.sparse_self_organizing_map nx, ny, sparse_data, = {} dims, data = sparse_data[0].kind_of?(Array) ? sparse_array_to_data(sparse_data) : sparse_hash_to_data(sparse_data) if .key?(:weights) weights = Array.new(dims.size) {1} [:weights].each {|k,v| weights[dims[k]] = v } [:weights] = weights end self_organizing_map(nx, ny, data, nil, ) end |
.spearman_distance(vec1, vec2) ⇒ Object
324 325 326 |
# File 'ext/flock.c', line 324 VALUE rb_spearman(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, spearman); } |
.uncentered_correlation_distance(vec1, vec2) ⇒ Object
312 313 314 |
# File 'ext/flock.c', line 312 VALUE rb_ucorrelation(VALUE self, VALUE vec1, VALUE vec2) { return rb_distance(vec1, vec2, ucorrelation); } |