Module: FinancialMaths

Defined in:
lib/financial_maths.rb,
lib/financial_maths/version.rb

Constant Summary collapse

VERSION =
"0.1.0"

Instance Method Summary collapse

Instance Method Details

#annuity_given_future(future_value, interest, term) ⇒ Object

hallar anualidad dado el valor futuro HADF



145
146
147
# File 'lib/financial_maths.rb', line 145

def annuity_given_future(future_value, interest, term)
   (future_value.to_f * (interest.to_f / ((1 + interest) ** term)-1)).round(4)
end

#annuity_given_present(present_value, interest, term) ⇒ Object

hallar Anualidad dado el valor presente HADP



139
140
141
142
# File 'lib/financial_maths.rb', line 139

def annuity_given_present(present_value, interest, term)
  interest = interest.to_f
   (present_value.to_f * ((interest * (1+interest) ** term) / (((1 + interest) ** term) -1))).round(4)
end

#anticipated_fixed_payment(present_value, rate, term) ⇒ Object

Hallar la cuota fija anticipada HCFA



204
205
206
# File 'lib/financial_maths.rb', line 204

def anticipated_fixed_payment(present_value, rate, term)
((present_value.to_f) / ((1 - (1 - rate.to_f ) ** term ) / rate.to_f )).round(4)
end

#anticipated_fixed_payment_amortization(periods, amount, rate, payment) ⇒ Object



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# File 'lib/financial_maths.rb', line 73

def anticipated_fixed_payment_amortization(periods, amount, rate, payment)
  result = []
  result << {:period=> 0, :monthly_payment => nil,
             :interest => amount * rate, :payment => nil,
             :balance => amount}

  for i in 1..periods
    month_payment = payment * ((1-rate) ** (periods - i))
    interest = payment - month_payment
    amount -= month_payment
    #date += 1
    result << {:period=> i,
               :payment => payment,
               :interest => interest,
               :monthly_payment => month_payment,
               :balance => amount}
  end
  result
end

#anticipated_interest(rate, periods) ⇒ Object

Description: Find nominal rate expired given effective rate - EFNV Formula: (1 - ((1 / (TASA EFECTIVA + 1))^(1/PERIODOS))



197
198
199
# File 'lib/financial_maths.rb', line 197

def anticipated_interest(rate, periods)
  (1 - (( 1 / ( rate.to_f + 1 )) ** (1.0 / periods)))
end

#anticipated_interest_amortization(periods, amount, rate) ⇒ Object



104
105
106
107
108
109
110
111
112
# File 'lib/financial_maths.rb', line 104

def anticipated_interest_amortization(periods, amount, rate)
  result = []

  for i in 0..(periods - 2) do  
    result << {period: i, monthly_payment: 0, interest: (amount * rate), payment: (amount * rate), balance: 0}
  end 

  result << {period: periods - 1, monthly_payment: amount , interest: amount * rate, payment: amount * rate + amount, balance: 0}
end

#anticipated_variable_payment_amortization(periods, amount, rate, payment) ⇒ Object



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# File 'lib/financial_maths.rb', line 26

def anticipated_variable_payment_amortization(periods, amount, rate,  payment)
      result = []
  #result << {:period=> 0, :monthly_payment => nil, :interest => nil, :payment => nil, :balance => amount}

  for i in 0..periods-1
    interest = amount * rate
    month_payment = payment + interest
    if i == periods
      amount -= amount
    else
      amount -= payment
    end

    #date += 1
    result << {:period=> i,
               :payment => month_payment,
               :interest => interest,
               :monthly_payment => payment,
               :balance => amount}
  end
  result
end

#due_fixed_payment_amortization(periods, amount, rate, payment) ⇒ Object



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# File 'lib/financial_maths.rb', line 50

def due_fixed_payment_amortization(periods, amount, rate, payment)
  result = []
  result << {:period=> 0, :monthly_payment => nil, :interest => nil, :payment => nil, :balance => amount}

  for i in 1..periods
    interest = amount * rate
    month_payment = payment - interest
    if i == periods
      amount -= amount
    else
      amount -= month_payment
    end
    
    #date += 1
    result << {:period=> i,
               :payment => payment,
               :interest => interest,
               :monthly_payment => month_payment,
               :balance => amount}
  end
  result
end

#due_interest_amortization(periods, amount, rate) ⇒ Object



93
94
95
96
97
98
99
100
101
102
# File 'lib/financial_maths.rb', line 93

def due_interest_amortization(periods, amount, rate)
  result = []
  result << {:period=> 0, :monthly_payment => nil, :interest => nil, :payment => nil, :balance => amount}
  
  for i in 1..(periods - 1) do  
    result << {period: i, monthly_payment: 0, interest: (amount * rate), payment: (amount * rate), balance: amount}
  end 

  result << {period: periods, monthly_payment: amount , interest: amount * rate, payment: amount * rate + amount, balance: 0}
end

#due_variable_payment_amortization(periods, amount, rate, payment) ⇒ Object



5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# File 'lib/financial_maths.rb', line 5

def due_variable_payment_amortization(periods, amount, rate,  payment)
  result = []
  result << {:period=> 0, :monthly_payment => nil, :interest => nil, :payment => nil, :balance => amount}

  for i in 1..periods
    interest = amount * rate
    month_payment = payment + interest
    if i == periods
      amount -= amount
    else
      amount -= payment
    end
    result << {:period=> i,
               :payment => month_payment,
               :interest => interest,
               :monthly_payment => payment,
               :balance => amount}
  end
  result
end

#efective_given_nominal_anticipated(nominal_rate, term) ⇒ Object

Description: Find effective rate given anticipated nominal rate - NAEF Formula: ((1 / ((1- (NOMINAL RATE / PERIODS)) ^ PERIODS)) -1



171
172
173
# File 'lib/financial_maths.rb', line 171

def efective_given_nominal_anticipated(nominal_rate, term)
  (((1/((1-((nominal_rate.to_f/100)/term))**term))-1)*100).round(4)
end

#efective_given_nominal_due(nominal_rate, term) ⇒ Object

Description: Find effective rate given nominal rate expired - NVEF Formula: ((1 + (NOMINAL RATE / PERIODS)) ^ PERIODS) - 1



164
165
166
# File 'lib/financial_maths.rb', line 164

def efective_given_nominal_due(nominal_rate, term)
  ((((1+((nominal_rate.to_f/100)/term))**term)-1).round(6))*100
end

#future_given_annuity(annuity, interest, term) ⇒ Object

hallar futuro dado la anualidad HFDA



155
156
157
# File 'lib/financial_maths.rb', line 155

def future_given_annuity(annuity, interest, term)
  (annuity * (((1 + interest.to_f) ** term) -1) / interest.to_f ).round(4)
end

#future_given_present(present_value, interest, term) ⇒ Object

hallar futuro dado el valor presente HFDP



129
130
131
# File 'lib/financial_maths.rb', line 129

def future_given_present(present_value, interest, term)
  (present_value.to_f * (1 + interest.to_f) ** term).round(4)
end

#nominal_anticipated_given_efective(effective_rate, periods) ⇒ Object

Description: Find nominal rate anticipated given effective rate - EFNV Formulas:

nominalRate   = (1 + EFFECTIVE RATE)^(1 / PERIODS) - 1
toAnticipated =  nominalRate / 1 + nominalRate
Returned      -> toAnticipated * PERIODS


181
182
183
184
185
# File 'lib/financial_maths.rb', line 181

def nominal_anticipated_given_efective(effective_rate, periods)
  nominalRate = (1+(effective_rate.to_f/100))**(1/periods.to_f)-1
  toAnticipated = nominalRate / (1+nominalRate)
  (toAnticipated * periods.to_f * 100).round(4)
end

#nominal_due_given_efective(effective_rate, periods) ⇒ Object

Description: Find nominal rate expired given effective rate - HCUA Formula: ((1 + EFFECTIVE RATE) ^ (1 / PERIODS) - 1)* PERIODS



190
191
192
# File 'lib/financial_maths.rb', line 190

def nominal_due_given_efective(effective_rate, periods)
      ((((1 + (effective_rate.to_f/100))**(1/periods.to_f)-1)*periods.to_f)*100).round(4)
end

#present_given_annuity(annuity, interest, term) ⇒ Object

hallar presente dado la anualidad HPDA



150
151
152
# File 'lib/financial_maths.rb', line 150

def present_given_annuity(annuity, interest, term)
  (annuity.to_f * (((1 + interest.to_f) ** term) -1) / (interest.to_f * (1 + interest.to_f) ** term )).round(4)
end

#present_given_future(future_value, interest, term) ⇒ Object

hallar presente dado el futuro HPDF



134
135
136
# File 'lib/financial_maths.rb', line 134

def present_given_future(future_value, interest, term)
  (future_value.to_f / (1 +interest.to_f) ** term).round(4)
end

#unique_payment_amortization(periods, amount, rate) ⇒ Object



114
115
116
117
118
119
120
121
122
123
124
125
# File 'lib/financial_maths.rb', line 114

def unique_payment_amortization(periods, amount, rate)
  result = []
  result << {:period=> 0, :monthly_payment => nil, :interest => nil, :payment => nil, :balance => amount}
  
  interest = (amount * rate) * periods
  
  for i in 1..(periods - 1) do  
    result << {:period=> i, :monthly_payment => 0, :interest => 0, :payment => 0, :balance => amount}
  end 
  
  result << {:period=> periods, :monthly_payment => amount, :interest => interest, :payment => amount + interest , :balance => 0}
end

#variable_payment(amount, periods) ⇒ Object



208
209
210
# File 'lib/financial_maths.rb', line 208

def variable_payment(amount, periods)
  amount.to_f / periods
end