Class: Fibonacci
- Inherits:
-
Object
- Object
- Fibonacci
- Defined in:
- ext/fibonacci/fibonacci.c
Instance Method Summary collapse
-
#[](n) ⇒ Object
Returns a Fixnum or Bignum.
-
#fast_val(n) ⇒ Object
Returns a Fixnum or Bignum.
- #initialize ⇒ Object constructor
-
#matrix(n) ⇒ Object
Returns a 2x2 matrix(2-dimensional array).
-
#num_digits(n) ⇒ Object
Returns the number of digits in the nth term of the series.
-
#print(n) ⇒ Object
Prints the first n terms of the series.
-
#terms(n) ⇒ Object
Returns a array with the first n terms of the series.
Constructor Details
#initialize ⇒ Object
23 24 25 26 27 |
# File 'ext/fibonacci/fibonacci.c', line 23 static VALUE fibonacci_init(VALUE self) { return self; } |
Instance Method Details
#[](n) ⇒ Object
Returns a Fixnum or Bignum.
fib[100]
#=> 354224848179261915075
fib[10]
#=> 55
fib[200]
#=> 280571172992510140037611932413038677189525
The value of nth term is calculated iteratively.
Refer to en.wikipedia.org/wiki/Fibonacci_number#First_identity
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# File 'ext/fibonacci/fibonacci.c', line 273 static VALUE rb_iterative_val(VALUE self, VALUE n) { VALUE start = TWO; VALUE fib_n_1 = ONE; VALUE fib_n_2 = ZERO; VALUE fib_n = ZERO; if(TYPE(n) != T_FIXNUM) { rb_raise(rb_eArgError, "Invalid argument for type Fixnum"); return Qnil; } if(RTEST(rb_funcall(n, id_lt, 1, ZERO))) { rb_raise(rb_eArgError, "n cannot be negative"); return Qnil; } if(rb_equal(n, ZERO)) { fib_n = ZERO; } else if(rb_equal(n, ONE)) { fib_n = ONE; } else { for(start; RTEST(rb_funcall(start, id_lte, 1, n)); start = rb_funcall(start, id_plus, 1, ONE)) { fib_n = rb_funcall(fib_n_1, id_plus, 1, fib_n_2); fib_n_2 = fib_n_1; fib_n_1 = fib_n; } } return fib_n; } |
#fast_val(n) ⇒ Object
Returns a Fixnum or Bignum.
fib.fast_val(100)
#=> 354224848179261915075
fib.fast_val(10)
#=> 55
fib.fast_val(200)
#=> 280571172992510140037611932413038677189525
ref: Daisuke Takahashi, A fast algorithm for computing large Fibonacci numbers, Information Processing Letters, Volume 75, Issue 6, 30 November 2000, Pages 243-246, ISSN 0020-0190, 10.1016/S0020-0190(00)00112-5.
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# File 'ext/fibonacci/fibonacci.c', line 59 static VALUE rb_fast_val(VALUE self, VALUE n) { VALUE f, l, sign, mask, log2, i, logn, logn_min_1, temp; if(TYPE(n) != T_FIXNUM) { rb_raise(rb_eArgError, "Invalid argument for type Fixnum"); return Qnil; } if(RTEST(rb_funcall(n, id_lt, 1, ZERO))) { rb_raise(rb_eArgError, "n cannot be negative"); return Qnil; } else { if(rb_equal(n, ZERO)) { return ZERO; } else if(rb_equal(n, ONE)) { return ONE; } else if(rb_equal(n, TWO)) { return ONE; } else { f = ONE; l = ONE; sign = MINUS_ONE; logn = rb_funcall(rb_mMath, id_log2, 1, n); logn = rb_funcall(logn, id_floor, 0); logn_min_1 = rb_funcall(logn, id_minus, 1, ONE); mask = rb_funcall(TWO, id_pow, 1, logn_min_1); for(i = ONE; RTEST(rb_funcall(i, id_lte, 1, logn_min_1)); i = rb_funcall(i, id_plus, 1, ONE)) { temp = rb_funcall(f, id_mul, 1, f); f = rb_funcall(f, id_plus, 1, l); f = rb_funcall(f, id_div, 1, TWO); f = rb_funcall(rb_funcall(f, id_mul, 1, f), id_mul, 1, TWO); f = rb_funcall(f, id_minus, 1, rb_funcall(temp, id_mul, 1, THREE)); f = rb_funcall(f, id_minus, 1, rb_funcall(sign, id_mul, 1, TWO)); l = rb_funcall(temp, id_mul, 1, INT2NUM(5)); l = rb_funcall(l, id_plus, 1, rb_funcall(TWO, id_mul, 1, sign)); sign = ONE; if(!rb_equal(rb_funcall(n, id_bit_and, 1, mask), ZERO)) { temp = f; f = rb_funcall(f, id_plus, 1, l); f = rb_funcall(f, id_div, 1, TWO); l = rb_funcall(TWO, id_mul, 1, temp); l = rb_funcall(l, id_plus, 1, f); sign = MINUS_ONE; } mask = rb_funcall(mask, id_div, 1, TWO); } if(rb_equal(rb_funcall(n, id_bit_and, 1, mask), ZERO)) { f = rb_funcall(f, id_mul, 1, l); } else { f = rb_funcall(f, id_plus, 1, l); f = rb_funcall(f, id_div, 1, TWO); f = rb_funcall(f, id_mul, 1, l); f = rb_funcall(f, id_minus, 1, sign); } } } return f; } |
#matrix(n) ⇒ Object
Returns a 2x2 matrix(2-dimensional array).
fib.matrix(10)
#=> [[89, 55], [55, 34]]
fib.matrix(100)
#=> [[573147844013817084101, 354224848179261915075], [354224848179261915075,218922995834555169026]]
arr = fib.matrix(15)
#=> [[987, 610], [610, 377]]
arr[0][1] or arr[1][0] is the value of nth term
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# File 'ext/fibonacci/fibonacci.c', line 190 static VALUE rb_matrix_form(VALUE self, VALUE n) { VALUE base_ary; VALUE res_ary; VALUE tmp_ary; long ary_len = 2; if(TYPE(n) != T_FIXNUM) { rb_raise(rb_eArgError, "Invalid argument for type Fixnum"); return Qnil; } if(RTEST(rb_funcall(n, id_lt, 1, ZERO))) { rb_raise(rb_eArgError, "n cannot be negative"); return Qnil; } else { base_ary = rb_ary_new2(ARY_LEN); res_ary = rb_ary_new2(ARY_LEN); tmp_ary = rb_ary_new2(ARY_LEN); /* base is {{1, 1}, {1, 0}} */ rb_ary_push(tmp_ary, ONE); rb_ary_push(tmp_ary, ONE); rb_ary_push(base_ary, tmp_ary); tmp_ary = rb_ary_new2(ARY_LEN); rb_ary_push(tmp_ary, ONE); rb_ary_push(tmp_ary, ZERO); rb_ary_push(base_ary, tmp_ary); /* res is {{1, 0}, {0, 1}} */ tmp_ary = rb_ary_new2(ARY_LEN); rb_ary_push(tmp_ary, ONE); rb_ary_push(tmp_ary, ZERO); rb_ary_push(res_ary, tmp_ary); tmp_ary = rb_ary_new2(ARY_LEN); rb_ary_push(tmp_ary, ZERO); rb_ary_push(tmp_ary, ONE); rb_ary_push(res_ary, tmp_ary); while(!rb_equal(n, ZERO)) { if(rb_equal(rb_funcall(n, id_mod, 1, TWO), ZERO)) { n = rb_funcall(n, id_div, 1, TWO); base_ary = rb_matrix_mul(base_ary, base_ary); } else { n = rb_funcall(n, id_minus, 1, ONE); res_ary = rb_matrix_mul(res_ary, base_ary); } } } return res_ary; } |
#num_digits(n) ⇒ Object
Returns the number of digits in the nth term of the series
fib.num_digits(10)
#=> 2
fib.num_digits(100)
#=> 21
Refer to en.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# File 'ext/fibonacci/fibonacci.c', line 450 static VALUE num_digits(VALUE self, VALUE n) { if(TYPE(n) != T_FIXNUM) { rb_raise(rb_eArgError, "Invalid argument for type Fixnum"); return Qnil; } if(RTEST(rb_funcall(n, id_lt, 1, ZERO))) { rb_raise(rb_eArgError, "n cannot be negative"); return Qnil; } VALUE phi = ONE; VALUE num_digits = ZERO; VALUE log_sqrt_5 = ZERO; VALUE sqrt_5; if(rb_equal(n, ZERO)) { return ZERO; } /* work around since the value log(phi/sqrt(5)) + 1 = 0.8595026380819693 * converting to integer would be zero */ if(rb_equal(n, ONE)) { return ONE; } if(RTEST(rb_funcall(n, id_gte, 1, TWO))) { sqrt_5 = rb_funcall(rb_mMath, id_sqrt, 1, INT2NUM(5)); log_sqrt_5 = rb_funcall(rb_mMath, id_log10, 1, sqrt_5); phi = rb_funcall(phi, id_plus, 1, sqrt_5); phi = rb_funcall(phi, id_fdiv, 1, TWO); num_digits = rb_funcall(rb_mMath, id_log10, 1, phi); num_digits = rb_funcall(num_digits, id_mul, 1, n); num_digits = rb_funcall(num_digits, id_minus, 1, log_sqrt_5); num_digits = rb_funcall(num_digits, id_floor, 0); num_digits = rb_funcall(num_digits, id_plus, 1, ONE); num_digits = rb_funcall(num_digits, id_to_i, 0); return num_digits; } } |
#print(n) ⇒ Object
Prints the first n terms of the series.
fib.print(1)
#=> 0
fib.print(2)
#=> 0
1
fib.print(5)
#=> 0
1
1
2
3
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# File 'ext/fibonacci/fibonacci.c', line 389 static VALUE print(VALUE self, VALUE n) { VALUE start = ZERO; VALUE fib_n_1 = ONE; VALUE fib_n_2 = ZERO; VALUE fib_n = ZERO; if(TYPE(n) != T_FIXNUM) { rb_raise(rb_eArgError, "Invalid argument for type Fixnum"); return Qnil; } if(RTEST(rb_funcall(n, id_lt, 1, ZERO))) { rb_raise(rb_eArgError, "n cannot be negative"); return Qnil; } for(start; RTEST(rb_funcall(start, id_lt, 1, n)); start = rb_funcall(start, id_plus, 1, ONE)) { if(rb_equal(start, ZERO)) { rb_print_num(ZERO); } else if(rb_equal(start, ONE)) { rb_print_num(ONE); } else { fib_n = rb_funcall(fib_n_1, id_plus, 1, fib_n_2); fib_n_2 = fib_n_1; fib_n_1 = fib_n; rb_print_num(fib_n); } } return Qnil; } |
#terms(n) ⇒ Object
Returns a array with the first n terms of the series
fib.terms(5)
#=> [0, 1, 1, 2, 3]
fib.terms(10)
#=> [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
fib.terms(15)
#=> [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]
fib.terms(0)
#=> []
Refer to en.wikipedia.org/wiki/Fibonacci_number#First_identity
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# File 'ext/fibonacci/fibonacci.c', line 333 static VALUE terms(VALUE self, VALUE n) { long ary_len = NUM2LONG(n); long i; VALUE ary = Qnil; if(ary_len < 0) { rb_raise(rb_eArgError, "num terms cannot be negative"); return ary; } ary = rb_ary_new2(ary_len); for(i=0; i < ary_len; i++) { if(i == 0) { rb_ary_store(ary, i, ZERO); } if((i > 0)) { if(i <= 2) { rb_ary_store(ary, i, ONE); } else { rb_ary_store(ary, i, rb_funcall(rb_ary_entry(ary, i-1), id_plus, 1, rb_ary_entry(ary, i-2))); } } } return ary; } |