Class: FasterPrime::PrimalityTest::APRCL

Inherits:
Object
  • Object
show all
Defined in:
lib/faster_prime/primality_test.rb

Overview

APRCL Primarity Test

Henry Cohen. A course in computational algebraic number theory. 9.1 The Jacobi Sum Test

Defined Under Namespace

Classes: Composite, Failed, JacobiSumTableClass, ZZeta

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(n, jacobi_sum_table: DefaultJacobiSumTable, t: nil) ⇒ APRCL

Creates an APRCL instance to test an integer that is less than bound



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# File 'lib/faster_prime/primality_test.rb', line 107

def initialize(n, jacobi_sum_table: DefaultJacobiSumTable, t: nil)
  # an integer in question
  @n = n

  # precompute n-1 and (n-1)/2 because n is normally big
  @n1 = n - 1
  @n1_2 = @n1 / 2

  # @eta[pk]: a set of p^k-th roots of unity
  @eta = {}

  # a cache of Jacobi sums
  @js = jacobi_sum_table

  # compute e(t)
  if t
    raise "t must be even" if t.odd?
    @t = t
    @et = compute_e(@t)
    raise "t is too small to test n" if @n >= @et ** 2
  else
    @t = find_t(@n)
    @et = compute_e(@t)
  end
end

Class Method Details

.prime?(n) ⇒ Boolean

Returns true if n is prime, false otherwise.

Returns:

  • (Boolean)


102
103
104
# File 'lib/faster_prime/primality_test.rb', line 102

def self.prime?(n)
  new(n).prime?
end

Instance Method Details

#prime?Boolean

Algorithm 9.1.28 (Jacobi Sum Primality test)

Returns:

  • (Boolean)


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# File 'lib/faster_prime/primality_test.rb', line 134

def prime?
  return false if @n <= 1

  # 1. [Check GCD]
  g = @n.gcd(@t * @et)
  return g == @n && PrimalityTest.prime?(g) if g != 1

  # 2. [Initialize]
  lp = {}
  PrimeFactorization.prime_factorization(@t) do |p, |
    lp[p] = false if p == 2 || Utils.mod_pow(@n, p - 1, p ** 2) == 1
  end

  # 3. [Loop on characters]
  Utils.each_divisor(@t) do |d|
    q = d + 1
    next unless PrimalityTest.prime?(q)
    PrimeFactorization.prime_factorization(d) do |p, k|
      # 4. [Check (*beta)]
      lp.delete(p) if step4(q, p, k)
    end
  end

  # 5. [Check conditions Lp]
  lp.keys.each {|p| step5(p) }

  # 6. [Final trial division]
  r = 1
  1.upto(@t - 1) do
    r = r * @n % @et
    return false if @n % r == 0 && 1 < r && r < @n
  end

  return true

rescue Composite
  return false
end