Class: Eps::BaseEstimator
- Inherits:
-
Object
- Object
- Eps::BaseEstimator
show all
- Defined in:
- lib/eps/base_estimator.rb
Class Method Summary
collapse
Instance Method Summary
collapse
Constructor Details
#initialize(data = nil, y = nil, **options) ⇒ BaseEstimator
Returns a new instance of BaseEstimator.
3
4
5
6
7
8
|
# File 'lib/eps/base_estimator.rb', line 3
def initialize(data = nil, y = nil, **options)
@options = options.dup
options.delete(:intercept)
train(data, y, **options) if data
end
|
Class Method Details
.load_pmml(pmml) ⇒ Object
43
44
45
46
47
48
|
# File 'lib/eps/base_estimator.rb', line 43
def self.load_pmml(pmml)
model = new
model.instance_variable_set("@evaluator", PMML.load(pmml))
model.instance_variable_set("@pmml", pmml.respond_to?(:to_xml) ? pmml.to_xml : pmml) model
end
|
Instance Method Details
#evaluate(data, y = nil, target: nil, weight: nil) ⇒ Object
34
35
36
37
|
# File 'lib/eps/base_estimator.rb', line 34
def evaluate(data, y = nil, target: nil, weight: nil)
data, target = prep_data(data, y, target || @target, weight)
Eps.metrics(data.label, predict(data), weight: data.weight)
end
|
#predict(data) ⇒ Object
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
# File 'lib/eps/base_estimator.rb', line 10
def predict(data)
singular = data.is_a?(Hash)
data = [data] if singular
data = Eps::DataFrame.new(data)
@evaluator.features.each do |k, type|
values = data.columns[k]
raise ArgumentError, "Missing column: #{k}" if !values
column_type = Utils.column_type(values.compact, k) if values
if !column_type.nil?
if (type == "numeric" && column_type != "numeric") || (type != "numeric" && column_type != "categorical")
raise ArgumentError, "Bad type for column #{k}: Expected #{type} but got #{column_type}"
end
end
end
predictions = @evaluator.predict(data)
singular ? predictions.first : predictions
end
|
#summary(extended: false) ⇒ Object
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
# File 'lib/eps/base_estimator.rb', line 50
def summary(extended: false)
str = String.new("")
if @validation_set
y_true = @validation_set.label
y_pred = predict(@validation_set)
case @target_type
when "numeric"
metric_name = "RMSE"
v = Metrics.rmse(y_true, y_pred, weight: @validation_set.weight)
metric_value = v.round >= 1000 ? v.round.to_s : "%.3g" % v
else
metric_name = "accuracy"
metric_value = "%.1f%%" % (100 * Metrics.accuracy(y_true, y_pred, weight: @validation_set.weight)).round(1)
end
str << "Validation %s: %s\n\n" % [metric_name, metric_value]
end
str << _summary(extended: extended)
str
end
|
#to_pmml ⇒ Object
39
40
41
|
# File 'lib/eps/base_estimator.rb', line 39
def to_pmml
@pmml ||= PMML.generate(self)
end
|