Class: Eps::BaseRegressor
- Inherits:
-
Object
- Object
- Eps::BaseRegressor
- Defined in:
- lib/eps/base_regressor.rb
Direct Known Subclasses
Instance Attribute Summary collapse
-
#coefficients ⇒ Object
readonly
Returns the value of attribute coefficients.
Class Method Summary collapse
-
.load(data) ⇒ Object
ruby.
-
.load_json(data) ⇒ Object
json.
-
.load_pfa(data) ⇒ Object
pfa.
-
.load_pmml(data) ⇒ Object
pmml.
Instance Method Summary collapse
- #dump ⇒ Object
-
#initialize(coefficients:) ⇒ BaseRegressor
constructor
A new instance of BaseRegressor.
- #predict(x) ⇒ Object
- #to_json ⇒ Object
Constructor Details
#initialize(coefficients:) ⇒ BaseRegressor
Returns a new instance of BaseRegressor.
5 6 7 |
# File 'lib/eps/base_regressor.rb', line 5 def initialize(coefficients:) @coefficients = Hash[coefficients.map { |k, v| [k.to_sym, v] }] end |
Instance Attribute Details
#coefficients ⇒ Object (readonly)
Returns the value of attribute coefficients.
3 4 5 |
# File 'lib/eps/base_regressor.rb', line 3 def coefficients @coefficients end |
Class Method Details
.load(data) ⇒ Object
ruby
29 30 31 |
# File 'lib/eps/base_regressor.rb', line 29 def self.load(data) BaseRegressor.new(Hash[data.map { |k, v| [k.to_sym, v] }]) end |
.load_json(data) ⇒ Object
json
39 40 41 42 43 44 45 46 47 48 49 50 |
# File 'lib/eps/base_regressor.rb', line 39 def self.load_json(data) data = JSON.parse(data) if data.is_a?(String) coefficients = data["coefficients"] # for R models if coefficients["(Intercept)"] coefficients = coefficients.dup coefficients["_intercept"] = coefficients.delete("(Intercept)") end BaseRegressor.new(coefficients: coefficients) end |
.load_pfa(data) ⇒ Object
pfa
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
# File 'lib/eps/base_regressor.rb', line 76 def self.load_pfa(data) data = JSON.parse(data) if data.is_a?(String) init = data["cells"].first[1]["init"] names = if data["input"]["fields"] data["input"]["fields"].map { |f| f["name"] } else init["coeff"].map.with_index { |_, i| "x#{i}" } end coefficients = { _intercept: init["const"] } init["coeff"].each_with_index do |c, i| name = names[i] # R can export coefficients with same name raise "Coefficients with same name" if coefficients[name] coefficients[name] = c end BaseRegressor.new(coefficients: coefficients) end |
.load_pmml(data) ⇒ Object
pmml
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/eps/base_regressor.rb', line 58 def self.load_pmml(data) data = Nokogiri::XML(data) if data.is_a?(String) # TODO more validation node = data.css("RegressionTable") coefficients = { _intercept: node.attribute("intercept").value.to_f } node.css("NumericPredictor").each do |n| coefficients[n.attribute("name").value] = n.attribute("coefficient").value.to_f end node.css("CategoricalPredictor").each do |n| coefficients["#{n.attribute("name").value}#{n.attribute("value").value}"] = n.attribute("coefficient").value.to_f end BaseRegressor.new(coefficients: coefficients) end |
Instance Method Details
#dump ⇒ Object
33 34 35 |
# File 'lib/eps/base_regressor.rb', line 33 def dump {coefficients: coefficients} end |
#predict(x) ⇒ Object
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
# File 'lib/eps/base_regressor.rb', line 9 def predict(x) singular = !(x.is_a?(Array) || daru?(x)) x = [x] if singular x, c = prep_x(x, train: false) coef = c.map do |v| # use 0 if coefficient does not exist # this can happen for categorical features # since only n-1 coefficients are stored coefficients[v] || 0 end x = Matrix.rows(x) c = Matrix.column_vector(coef) pred = matrix_arr(x * c) singular ? pred[0] : pred end |
#to_json ⇒ Object
52 53 54 |
# File 'lib/eps/base_regressor.rb', line 52 def to_json JSON.generate(dump) end |