Class: EightCorner::Base

Inherits:
Object
  • Object
show all
Defined in:
lib/eight_corner/base.rb

Overview

This class is a catch-all. Will be cleaned up, you know, sometime.

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(x_extent, y_extent, options = {}) ⇒ Base

Returns a new instance of Base.



12
13
14
15
16
17
18
19
20
21
22
23
24
25
# File 'lib/eight_corner/base.rb', line 12

def initialize(x_extent, y_extent, options={})
  defaults = {
    logger: Logger.new('/dev/null')
  }
  self.class.validate_options!(options, defaults)

  options = defaults.merge(options)

  @bounds = Bounds.new(x_extent, y_extent)
  @point_count = 8

  @log = options[:logger]
  # @figure_interdepencence = options[:figure_interdepencence]
end

Class Method Details

.validate_options!(options, defaults) ⇒ Object



5
6
7
8
9
10
# File 'lib/eight_corner/base.rb', line 5

def self.validate_options!(options, defaults)
  unknown_options = options.keys - defaults.keys
  if unknown_options.size > 0
    raise ArgumentError, "Unrecognized options: #{unknown_options.inspect}"
  end
end

Instance Method Details

#aas(angle_a, angle_b, side_A) ⇒ Object

angle, angle, side A / sin(a) == B / sin(b) return length of side_B



272
273
274
# File 'lib/eight_corner/base.rb', line 272

def aas(angle_a, angle_b, side_A)
  side_A / Math.sin(deg2rad(angle_a)) * Math.sin(deg2rad(angle_b))
end

#angle(current, percent) ⇒ Object

pick an angle for the next point steer away from the corners by avoiding angles which tend toward the corner we are currently closest to.

current Point x & y extents percent : how far along the arc should we go?

as a float 0..1
always counter-clockwise.

return: an angle from current point.



194
195
196
197
198
199
200
201
202
203
# File 'lib/eight_corner/base.rb', line 194

def angle(current, percent)

  range = Quadrant.angle_range_for(@bounds.quadrant(current))
  interp = Interpolate::Points.new({
    0 => range.begin,
    1 => range.end
  })

  interp.at(percent).to_i % 360
end

#deg2rad(degrees) ⇒ Object



261
262
263
# File 'lib/eight_corner/base.rb', line 261

def deg2rad(degrees)
  degrees * Math::PI / 180
end

#distance_to_boundary(point, degrees) ⇒ Object

what is the distance from point to extent, along a line of degrees angle



206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# File 'lib/eight_corner/base.rb', line 206

def distance_to_boundary(point, degrees)
  degrees %= 360

  case degrees
    when 0 then
      point.x

    when 1..89 then
      to_top = aas(90-degrees, 90, point.y)
      to_right = aas(degrees, 90, @bounds.x - point.x)
      [to_top, to_right].min

    when 90 then
      @bounds.x - point.x

    when 91..179 then
      to_right = aas(180-degrees, 90, @bounds.x - point.x)
      to_bottom = aas(90-180-degrees, 90, @bounds.y - point.y)
      [to_right, to_bottom].min

    when 180 then
      @bounds.y - point.y

    when 181..269 then
      to_bottom = aas(90-degrees-180, 90, @bounds.y - point.y)
      to_left = aas(degrees - 180, 90, point.x)
      [to_bottom, to_left].min

    when 270 then
      point.x

    when 271..359 then
      to_left = aas(360-degrees, 90, point.x)
      to_top = aas(90-360-degrees, 90, point.y)
      [to_left, to_top].min

  end
end

#next_point(last_point, angle, distance) ⇒ Object



245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# File 'lib/eight_corner/base.rb', line 245

def next_point(last_point, angle, distance)
  # geometry black magic here. still not positive exactly why this works.
  # unit circle begins at 90 and goes counterclockwise.
  # we want to start at 0 and go clockwise
  # orientation of 0 degrees to coordinate space probably matters also.
  theta = (180 - angle) % 360

  point = Point.new
  point.x = (Math.sin(deg2rad(theta)) * distance + last_point.x).round
  point.y = (Math.cos(deg2rad(theta)) * distance + last_point.y).round
  point.distance_from_last = distance
  point.angle_from_last = angle
  point.bounds = @bounds
  point
end

#plot(str, options = {}) ⇒ Object



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# File 'lib/eight_corner/base.rb', line 27

def plot(str, options={})
  defaults = {
    group_method: :group2,
    angle_method: :percentize_modulus_exp,
    distance_method: :percentize_modulus,
    start_method: :starting_point,
    # will the initial_potential, and potentials generated from previous
    # points in the same figure, be used to alter the angle to the next
    # point?
    point_interdependence: true,
    # 0.5 is 'no change' see angle_potential_interp
    initial_potential: 0.5
  }
  self.class.validate_options!(options, defaults)
  options = defaults.merge(options)

  mapper = StringMapper.new(group_count: @point_count-1)

  # 7 2-element arrays. each value is a float 0..1.
  # 1st: % applied to calculate an angle
  # 2nd: % applied to calculate a distance
  potentials = mapper.potentials(
    mapper.groups(str, options[:group_method]),
    options[:angle_method],
    options[:distance_method]
  )

  # the figure we are drawing.
  figure = Figure.new
  # set starting point.
  figure.points << send(options[:start_method], str)

  # a potential is a value derived from the previous point in a figure
  # these are used to modify the angle used to locate the next point in
  # the figure. in this way, previous figures add influence
  # which wouldn't be present if the figure were drawn on its own.
  #   - median potential (0.5) changes nothing.
  #   - extremely low potential (0.0) moves the angle 15% counter-clockwise
  #   - extremely high potential (1.0) moves the angle 15% clockwise
  angle_potential_interp = Interpolate::Points.new(0.0 => -0.15, 0.5 => 0.0, 1.0 => 0.15)

  # increase low distance potentials to encourage longer lines
  # this is added to the raw distance potential determined by the string mapper.
  #   - a distance_pct of 0 will have 0.3 added to it.
  #   - a distance_pct of 0.5 or greater will have nothing added to it.
  additional_distance_interp = Interpolate::Points.new(0.0 => 0.3, 0.5 => 0.0)

  previous_potential = options[:initial_potential]

  (@point_count - 1).times do |i|
    current_point = figure.points[i]

    # TODO encourage more open angles?
    angle_pct = potentials[i][0]
    distance_pct = potentials[i][1]

    @log.debug(['angle_pct', angle_pct])

    # if points can influence each other, apply potential from previous
    # point to the angle-selection process.
    if options[:point_interdependence]
      angle_pct_adjustment = angle_potential_interp.at(previous_potential)
      @log.debug(['angle_pct_adjustment', angle_pct_adjustment])

      @log.debug(['pre-ajustment', angle_pct, angle(current_point, angle_pct)])
      angle_pct += angle_pct_adjustment
      @log.debug(['post-ajustment', angle_pct, angle(current_point, angle_pct)])
    end

    angle_to_next = angle(current_point, angle_pct)
    dist_to_boundary = distance_to_boundary(current_point, angle_to_next)

    @log.debug(['angle_to_next', angle_to_next])
    @log.debug(['distance_to_boundary', dist_to_boundary])

    # if we're too close to the edge, go the opposite direction.
    # so we don't get trapped in a corner.
    if dist_to_boundary <= 1
      @log.debug('dist_to_boundary is close to border. adjust angle.')

      angle_to_next += 180
      angle_to_next %= 360
      dist_to_boundary = distance_to_boundary(current_point, angle_to_next)

      @log.debug(['after 180: angle_to_next', angle_to_next])
      @log.debug(['after 180: distance_to_boundary', dist_to_boundary])
    end

    # how to encourage more space-filling?
    # track how many points are in each quadrant.
    # if current point is in the most-populated one, move to least-populated.
    # if current point and previous point are too close together...
    # if current point and last point are in different quadrants...


    distance_pct += additional_distance_interp.at(distance_pct)

    # longer lines fill space better
    distance_pct = 0.3 if distance_pct < 0.3
    # keep away from bounds.
    distance_pct = 0.9 if distance_pct > 0.9

    distance = dist_to_boundary * distance_pct

    next_point = next_point(
      current_point,
      angle_to_next,
      distance
    )
    next_point.angle_pct = angle_pct
    next_point.distance_pct = distance_pct
    next_point.created_by_potential = previous_potential

    # TODO: how do we create invalid points?
    # some bug in distance_to_boundary, most likely.
    if ! next_point.valid?
      if next_point.x < 0
        next_point.x = 0
      end
      if next_point.y < 0
        next_point.y = 0
      end

      @log.error "point produced invalid next. '#{str}' #{i}"
      @log.error(['angle_to_next', angle_to_next])
      @log.error(['distance_to_boundary', dist_to_boundary])
      @log.error(['next_point', next_point])
    end

    figure.points << next_point
    previous_potential = figure.points.last.potential
  end

  figure
end

#rad2deg(radians) ⇒ Object



265
266
267
# File 'lib/eight_corner/base.rb', line 265

def rad2deg(radians)
  radians * 180 / Math::PI
end

#starting_point(str) ⇒ Object

return a starting point for string



164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# File 'lib/eight_corner/base.rb', line 164

def starting_point(str)
  mapper = StringMapper.new
  raw_x_pct = mapper.percentize_modulus(str)
  raw_y_pct = mapper.percentize_modulus_exp(str)

  # mapper produces raw %'s 0..1.
  # figures that start out very close to a border often get trapped and
  # look strange, so we won't allow a starting point <30% or >70%.
  interp = Interpolate::Points.new(0 => 0.2, 1 => 0.8)

  x_pct = interp.at( raw_x_pct )
  y_pct = interp.at( raw_y_pct )

  Point.new(
    (x_pct * @bounds.x).to_i,
    (y_pct * @bounds.y).to_i
  )
end