Class: DSPy::Teleprompt::Teleprompter
- Inherits:
-
Object
- Object
- DSPy::Teleprompt::Teleprompter
show all
- Extended by:
- T::Sig
- Defined in:
- lib/dspy/teleprompt/teleprompter.rb
Overview
Base class for all DSPy teleprompters (optimizers) Defines the common interface and provides shared functionality for prompt optimization
Defined Under Namespace
Classes: Config, OptimizationResult
Instance Attribute Summary collapse
Instance Method Summary
collapse
Constructor Details
#initialize(metric: nil, config: nil) ⇒ Teleprompter
138
139
140
141
142
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 138
def initialize(metric: nil, config: nil)
@metric = metric
@config = config || Config.new
@evaluator = nil
end
|
Instance Attribute Details
#config ⇒ Object
Returns the value of attribute config.
124
125
126
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 124
def config
@config
end
|
#evaluator ⇒ Object
Returns the value of attribute evaluator.
130
131
132
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 130
def evaluator
@evaluator
end
|
#metric ⇒ Object
Returns the value of attribute metric.
127
128
129
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 127
def metric
@metric
end
|
Instance Method Details
#compile(program, trainset:, valset: nil) ⇒ Object
152
153
154
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 152
def compile(program, trainset:, valset: nil)
raise NotImplementedError, "Subclasses must implement the compile method"
end
|
#create_evaluator(examples) ⇒ Object
188
189
190
191
192
193
194
195
196
197
198
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 188
def create_evaluator(examples)
evaluation_metric = @metric || default_metric_for_examples(examples)
@evaluator = DSPy::Evaluate.new(
nil, metric: evaluation_metric,
num_threads: @config.num_threads,
max_errors: @config.max_errors
)
end
|
#ensure_typed_examples(examples, signature_class = nil) ⇒ Object
179
180
181
182
183
184
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 179
def ensure_typed_examples(examples, signature_class = nil)
return examples if examples.all? { |ex| ex.is_a?(DSPy::Example) }
raise ArgumentError, "All examples must be DSPy::Example instances. Legacy format support has been removed. Please convert your examples to use the structured format with :input and :expected keys."
end
|
#evaluate_program(program, examples, metric: nil) ⇒ Object
208
209
210
211
212
213
214
215
216
217
218
219
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 208
def evaluate_program(program, examples, metric: nil)
evaluation_metric = metric || @metric || default_metric_for_examples(examples)
evaluator = DSPy::Evaluate.new(
program,
metric: evaluation_metric,
num_threads: @config.num_threads,
max_errors: @config.max_errors
)
evaluator.evaluate(examples, display_progress: false)
end
|
#save_results(result) ⇒ Object
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 223
def save_results(result)
if @config.save_intermediate_results && @config.save_path
File.open(@config.save_path, 'w') do |f|
f.write(JSON.pretty_generate(result.to_h))
end
end
if @config.save_intermediate_results
storage_manager = DSPy::Storage::StorageManager.instance
storage_manager.save_optimization_result(
result,
tags: [self.class.name.split('::').last.downcase],
description: "Optimization by #{self.class.name}",
metadata: {
teleprompter_class: self.class.name,
config: @config.to_h,
optimization_duration: result.metadata[:optimization_duration] || 0
}
)
end
if @config.save_intermediate_results
registry_manager = DSPy::Registry::RegistryManager.instance
registry_manager.register_optimization_result(
result,
metadata: {
teleprompter_class: self.class.name,
config: @config.to_h
}
)
end
end
|
164
165
166
167
168
169
170
171
172
173
174
175
|
# File 'lib/dspy/teleprompt/teleprompter.rb', line 164
def validate_inputs(program, trainset, valset = nil)
raise ArgumentError, "Program cannot be nil" unless program
raise ArgumentError, "Training set cannot be empty" if trainset.empty?
if @config.require_validation_examples && (valset.nil? || valset.empty?)
raise ArgumentError, "Validation set is required but not provided"
end
validate_examples(trainset, "training")
validate_examples(valset, "validation") if valset && valset.any?
end
|