Module: DSPy::Teleprompt::Utils
- Extended by:
- T::Sig
- Defined in:
- lib/dspy/teleprompt/utils.rb
Overview
Bootstrap utilities for MIPROv2 optimization Handles few-shot example generation and candidate program evaluation
Defined Under Namespace
Classes: BootstrapConfig, BootstrapResult
Class Method Summary collapse
- .create_candidate_sets(successful_examples, config) ⇒ Object
- .create_n_fewshot_demo_sets(program, trainset, config: BootstrapConfig.new, metric: nil) ⇒ Object
- .create_successful_bootstrap_example(original_example, prediction) ⇒ Object
- .default_metric_for_examples(examples) ⇒ Object
- .emit_bootstrap_complete_event(statistics) ⇒ Object
- .emit_bootstrap_example_event(index, success, error) ⇒ Object
- .ensure_typed_examples(examples) ⇒ Object
- .eval_candidate_program(program, examples, config: BootstrapConfig.new, metric: nil) ⇒ Object
- .eval_candidate_program_full(program, examples, config, metric) ⇒ Object
- .eval_candidate_program_minibatch(program, examples, config, metric) ⇒ Object
- .generate_successful_examples(program, examples, config, metric) ⇒ Object
- .infer_signature_class(examples) ⇒ Object
Class Method Details
.create_candidate_sets(successful_examples, config) ⇒ Object
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# File 'lib/dspy/teleprompt/utils.rb', line 290 def self.create_candidate_sets(successful_examples, config) return [] if successful_examples.empty? # Use DataHandler for efficient sampling data_handler = DataHandler.new(successful_examples) set_size = [config.max_bootstrapped_examples, successful_examples.size].min # Create candidate sets efficiently candidate_sets = data_handler.create_candidate_sets( config.num_candidate_sets, set_size, random_state: 42 # For reproducible results ) candidate_sets end |
.create_n_fewshot_demo_sets(program, trainset, config: BootstrapConfig.new, metric: nil) ⇒ Object
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# File 'lib/dspy/teleprompt/utils.rb', line 106 def self.create_n_fewshot_demo_sets(program, trainset, config: BootstrapConfig.new, metric: nil) Instrumentation.instrument('dspy.optimization.bootstrap_start', { trainset_size: trainset.size, max_bootstrapped_examples: config.max_bootstrapped_examples, num_candidate_sets: config.num_candidate_sets }) do # Convert to typed examples if needed typed_examples = ensure_typed_examples(trainset) # Generate successful examples through bootstrap successful_examples, failed_examples = generate_successful_examples( program, typed_examples, config, metric ) # Create candidate sets from successful examples candidate_sets = create_candidate_sets(successful_examples, config) # Gather statistics statistics = { total_trainset: trainset.size, successful_count: successful_examples.size, failed_count: failed_examples.size, success_rate: successful_examples.size.to_f / (successful_examples.size + failed_examples.size), candidate_sets_created: candidate_sets.size, average_set_size: candidate_sets.empty? ? 0 : candidate_sets.map(&:size).sum.to_f / candidate_sets.size } emit_bootstrap_complete_event(statistics) BootstrapResult.new( candidate_sets: candidate_sets, successful_examples: successful_examples, failed_examples: failed_examples, statistics: statistics ) end end |
.create_successful_bootstrap_example(original_example, prediction) ⇒ Object
314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# File 'lib/dspy/teleprompt/utils.rb', line 314 def self.create_successful_bootstrap_example(original_example, prediction) # Convert prediction to FewShotExample format DSPy::Example.new( signature_class: original_example.signature_class, input: original_example.input_values, expected: prediction.to_h, id: "bootstrap_#{original_example.id || SecureRandom.uuid}", metadata: { source: "bootstrap", original_expected: original_example.expected_values, bootstrap_timestamp: Time.now.iso8601 } ) end |
.default_metric_for_examples(examples) ⇒ Object
332 333 334 335 336 337 338 |
# File 'lib/dspy/teleprompt/utils.rb', line 332 def self.default_metric_for_examples(examples) if examples.first.is_a?(DSPy::Example) proc { |example, prediction| example.matches_prediction?(prediction) } else nil end end |
.emit_bootstrap_complete_event(statistics) ⇒ Object
342 343 344 345 346 347 348 349 350 |
# File 'lib/dspy/teleprompt/utils.rb', line 342 def self.emit_bootstrap_complete_event(statistics) Instrumentation.emit('dspy.optimization.bootstrap_complete', { successful_count: statistics[:successful_count], failed_count: statistics[:failed_count], success_rate: statistics[:success_rate], candidate_sets_created: statistics[:candidate_sets_created], average_set_size: statistics[:average_set_size] }) end |
.emit_bootstrap_example_event(index, success, error) ⇒ Object
354 355 356 357 358 359 360 361 |
# File 'lib/dspy/teleprompt/utils.rb', line 354 def self.emit_bootstrap_example_event(index, success, error) Instrumentation.emit('dspy.optimization.bootstrap_example', { example_index: index, success: success, error: error, timestamp: Time.now.iso8601 }) end |
.ensure_typed_examples(examples) ⇒ Object
214 215 216 217 218 |
# File 'lib/dspy/teleprompt/utils.rb', line 214 def self.ensure_typed_examples(examples) return examples if examples.all? { |ex| ex.is_a?(DSPy::Example) } raise ArgumentError, "All examples must be DSPy::Example instances. Legacy format support has been removed. Please convert your examples to use the structured format with :input and :expected keys." end |
.eval_candidate_program(program, examples, config: BootstrapConfig.new, metric: nil) ⇒ Object
156 157 158 159 160 161 162 163 |
# File 'lib/dspy/teleprompt/utils.rb', line 156 def self.eval_candidate_program(program, examples, config: BootstrapConfig.new, metric: nil) # Use minibatch evaluation for large datasets if examples.size > config.minibatch_size eval_candidate_program_minibatch(program, examples, config, metric) else eval_candidate_program_full(program, examples, config, metric) end end |
.eval_candidate_program_full(program, examples, config, metric) ⇒ Object
197 198 199 200 201 202 203 204 205 206 207 208 |
# File 'lib/dspy/teleprompt/utils.rb', line 197 def self.eval_candidate_program_full(program, examples, config, metric) # Create evaluator with proper configuration evaluator = DSPy::Evaluate.new( program, metric: metric || default_metric_for_examples(examples), num_threads: config.num_threads, max_errors: config.max_errors ) # Run evaluation evaluator.evaluate(examples, display_progress: false) end |
.eval_candidate_program_minibatch(program, examples, config, metric) ⇒ Object
174 175 176 177 178 179 180 181 182 183 184 185 186 |
# File 'lib/dspy/teleprompt/utils.rb', line 174 def self.eval_candidate_program_minibatch(program, examples, config, metric) Instrumentation.instrument('dspy.optimization.minibatch_evaluation', { total_examples: examples.size, minibatch_size: config.minibatch_size, num_batches: (examples.size.to_f / config.minibatch_size).ceil }) do # Randomly sample a minibatch for evaluation sample_size = [config.minibatch_size, examples.size].min sampled_examples = examples.sample(sample_size) eval_candidate_program_full(program, sampled_examples, config, metric) end end |
.generate_successful_examples(program, examples, config, metric) ⇒ Object
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# File 'lib/dspy/teleprompt/utils.rb', line 229 def self.generate_successful_examples(program, examples, config, metric) successful = [] failed = [] error_count = 0 # Use DataHandler for efficient shuffling data_handler = DataHandler.new(examples) shuffled_examples = data_handler.shuffle(random_state: 42) shuffled_examples.each_with_index do |example, index| break if successful.size >= config.max_labeled_examples break if error_count >= config.max_errors begin # Run program on example input prediction = program.call(**example.input_values) # Check if prediction matches expected output if metric success = metric.call(example, prediction.to_h) else success = example.matches_prediction?(prediction.to_h) end if success # Create a new example with the successful prediction as reasoning/context successful_example = create_successful_bootstrap_example(example, prediction) successful << successful_example emit_bootstrap_example_event(index, true, nil) else failed << example emit_bootstrap_example_event(index, false, "Prediction did not match expected output") end rescue => error error_count += 1 failed << example emit_bootstrap_example_event(index, false, error.) # Log error but continue processing DSPy.logger.warn("Bootstrap error on example #{index}: #{error.}") # Stop if too many errors if error_count >= config.max_errors DSPy.logger.error("Too many bootstrap errors (#{error_count}), stopping early") break end end end [successful, failed] end |
.infer_signature_class(examples) ⇒ Object
365 366 367 368 369 370 371 372 373 374 375 376 377 |
# File 'lib/dspy/teleprompt/utils.rb', line 365 def self.infer_signature_class(examples) return nil if examples.empty? first_example = examples.first if first_example.is_a?(DSPy::Example) first_example.signature_class elsif first_example.is_a?(Hash) && first_example[:signature_class] first_example[:signature_class] else nil end end |