Class: DSPy::Teleprompt::GEPA::GeneticEngine
- Inherits:
-
Object
- Object
- DSPy::Teleprompt::GEPA::GeneticEngine
- Extended by:
- T::Sig
- Defined in:
- lib/dspy/teleprompt/gepa.rb
Overview
GeneticEngine orchestrates the genetic algorithm for prompt evolution Manages population, selection, and evolution across generations
Instance Attribute Summary collapse
-
#config ⇒ Object
readonly
Returns the value of attribute config.
-
#fitness_evaluator ⇒ Object
readonly
Returns the value of attribute fitness_evaluator.
-
#generation ⇒ Object
readonly
Returns the value of attribute generation.
-
#population ⇒ Object
readonly
Returns the value of attribute population.
Instance Method Summary collapse
- #evaluate_population(trainset) ⇒ Object
- #evolve_generation(trainset) ⇒ Object
- #get_best_candidate ⇒ Object
-
#initialize(config:, fitness_evaluator:) ⇒ GeneticEngine
constructor
A new instance of GeneticEngine.
- #initialize_population(program) ⇒ Object
- #population_diversity ⇒ Object
- #run_evolution(program, trainset) ⇒ Object
Constructor Details
#initialize(config:, fitness_evaluator:) ⇒ GeneticEngine
Returns a new instance of GeneticEngine.
1035 1036 1037 1038 1039 1040 1041 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1035 def initialize(config:, fitness_evaluator:) @config = config @fitness_evaluator = fitness_evaluator @population = T.let([], T::Array[T.untyped]) @generation = 0 @fitness_scores = T.let([], T::Array[FitnessScore]) end |
Instance Attribute Details
#config ⇒ Object (readonly)
Returns the value of attribute config.
1023 1024 1025 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1023 def config @config end |
#fitness_evaluator ⇒ Object (readonly)
Returns the value of attribute fitness_evaluator.
1026 1027 1028 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1026 def fitness_evaluator @fitness_evaluator end |
#generation ⇒ Object (readonly)
Returns the value of attribute generation.
1032 1033 1034 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1032 def generation @generation end |
#population ⇒ Object (readonly)
Returns the value of attribute population.
1029 1030 1031 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1029 def population @population end |
Instance Method Details
#evaluate_population(trainset) ⇒ Object
1092 1093 1094 1095 1096 1097 1098 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1092 def evaluate_population(trainset) @fitness_scores = @population.map do |candidate| @fitness_evaluator.evaluate_candidate(candidate, trainset) end @fitness_scores end |
#evolve_generation(trainset) ⇒ Object
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1102 def evolve_generation(trainset) current_scores = evaluate_population(trainset) # Simple selection: keep top 50% and mutate them sorted_indices = (0...@population.size).sort_by { |i| -current_scores[i].overall_score } survivors = sorted_indices.take([@config.population_size / 2, 1].max) new_population = [] # Keep best performers survivors.each { |i| new_population << @population[i] } # Fill rest with mutations of survivors while new_population.size < @config.population_size parent_index = survivors.sample parent = @population[parent_index] # Generate mutation if parent has signature_class if parent.respond_to?(:signature_class) && parent.signature_class.respond_to?(:description) variants = generate_instruction_variants(parent.signature_class.description) mutated = create_program_with_instruction(parent, variants.first || parent.signature_class.description) new_population << mutated else # If no signature_class, just duplicate the parent new_population << parent end end @population = new_population @generation += 1 end |
#get_best_candidate ⇒ Object
1184 1185 1186 1187 1188 1189 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1184 def get_best_candidate return @population.first if @fitness_scores.empty? best_index = @fitness_scores.each_with_index.max_by { |score, _| score.overall_score }[1] @population[best_index] end |
#initialize_population(program) ⇒ Object
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1045 def initialize_population(program) @population = [] # Start with original program @population << program # Generate instruction variants to fill population if program has signature_class if program.respond_to?(:signature_class) && program.signature_class.respond_to?(:description) original_instruction = program.signature_class.description if original_instruction && !original_instruction.empty? variants = generate_instruction_variants(original_instruction) else variants = [] end else variants = [] end # Create program copies with different instructions variants.take(@config.population_size - 1).each do |variant| variant_program = create_program_with_instruction(program, variant) @population << variant_program end # If we need more candidates, duplicate and mutate while @population.size < @config.population_size base_program = @population.sample if base_program.respond_to?(:signature_class) && base_program.signature_class.respond_to?(:description) instruction_variants = generate_instruction_variants(base_program.signature_class.description) if instruction_variants.any? mutated = create_program_with_instruction(base_program, instruction_variants.first) @population << mutated else # If no variants available, just duplicate the base program @population << base_program end else # If no signature_class available, just duplicate the base program @population << base_program end end @generation = 0 end |
#population_diversity ⇒ Object
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1193 def population_diversity return 0.0 if @population.empty? # Only calculate diversity for programs that have signature_class instructions = @population.filter_map do |program| if program.respond_to?(:signature_class) && program.signature_class.respond_to?(:description) program.signature_class.description else nil end end return 0.0 if instructions.empty? unique_instructions = instructions.uniq.size unique_instructions.to_f / instructions.size.to_f end |
#run_evolution(program, trainset) ⇒ Object
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
# File 'lib/dspy/teleprompt/gepa.rb', line 1136 def run_evolution(program, trainset) initialize_population(program) history = [] # Initial evaluation initial_scores = evaluate_population(trainset) best_initial = initial_scores.max_by(&:overall_score) avg_initial = initial_scores.map(&:overall_score).sum / initial_scores.size history << { generation: 0, best_fitness: best_initial.overall_score, avg_fitness: avg_initial, diversity: population_diversity } # Evolution loop @config.num_generations.times do evolve_generation(trainset) scores = evaluate_population(trainset) best_score = scores.max_by(&:overall_score) avg_score = scores.map(&:overall_score).sum / scores.size history << { generation: @generation, best_fitness: best_score.overall_score, avg_fitness: avg_score, diversity: population_diversity } end best_fitness_score = @fitness_scores.max_by(&:overall_score) { best_candidate: get_best_candidate, best_fitness: best_fitness_score || FitnessScore.new( primary_score: 0.0, secondary_scores: {}, overall_score: 0.0, metadata: {} ), generation_history: history, generation_count: @generation, final_population: @population.dup } end |