Class: Disco::Recommender
- Inherits:
-
Object
- Object
- Disco::Recommender
- Defined in:
- lib/disco/recommender.rb
Instance Attribute Summary collapse
-
#global_mean ⇒ Object
readonly
Returns the value of attribute global_mean.
-
#item_factors ⇒ Object
readonly
Returns the value of attribute item_factors.
-
#user_factors ⇒ Object
readonly
Returns the value of attribute user_factors.
Instance Method Summary collapse
- #fit(train_set, validation_set: nil) ⇒ Object
-
#initialize(factors: 8, epochs: 20, verbose: nil) ⇒ Recommender
constructor
A new instance of Recommender.
- #optimize_similar_items ⇒ Object (also: #optimize_item_recs)
- #optimize_similar_users ⇒ Object
-
#predict(data) ⇒ Object
generates a prediction even if a user has already rated the item.
- #similar_items(item_id, count: 5) ⇒ Object (also: #item_recs)
- #similar_users(user_id, count: 5) ⇒ Object
- #user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
Constructor Details
#initialize(factors: 8, epochs: 20, verbose: nil) ⇒ Recommender
Returns a new instance of Recommender.
5 6 7 8 9 |
# File 'lib/disco/recommender.rb', line 5 def initialize(factors: 8, epochs: 20, verbose: nil) @factors = factors @epochs = epochs @verbose = verbose end |
Instance Attribute Details
#global_mean ⇒ Object (readonly)
Returns the value of attribute global_mean.
3 4 5 |
# File 'lib/disco/recommender.rb', line 3 def global_mean @global_mean end |
#item_factors ⇒ Object (readonly)
Returns the value of attribute item_factors.
3 4 5 |
# File 'lib/disco/recommender.rb', line 3 def item_factors @item_factors end |
#user_factors ⇒ Object (readonly)
Returns the value of attribute user_factors.
3 4 5 |
# File 'lib/disco/recommender.rb', line 3 def user_factors @user_factors end |
Instance Method Details
#fit(train_set, validation_set: nil) ⇒ Object
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/disco/recommender.rb', line 11 def fit(train_set, validation_set: nil) train_set = to_dataset(train_set) validation_set = to_dataset(validation_set) if validation_set @implicit = !train_set.any? { |v| v[:rating] } unless @implicit = train_set.map { |o| o[:rating] } () = .min = .max if validation_set (validation_set.map { |o| o[:rating] }) end end check_training_set(train_set) create_maps(train_set) @rated = Hash.new { |hash, key| hash[key] = {} } input = [] value_key = @implicit ? :value : :rating train_set.each do |v| u = @user_map[v[:user_id]] i = @item_map[v[:item_id]] @rated[u][i] = true # explicit will always have a value due to check_ratings input << [u, i, v[value_key] || 1] end @rated.default = nil eval_set = nil if validation_set eval_set = [] validation_set.each do |v| u = @user_map[v[:user_id]] i = @item_map[v[:item_id]] # set to non-existent item u ||= -1 i ||= -1 eval_set << [u, i, v[value_key] || 1] end end loss = @implicit ? 12 : 0 verbose = @verbose verbose = true if verbose.nil? && eval_set model = Libmf::Model.new(loss: loss, factors: @factors, iterations: @epochs, quiet: !verbose) model.fit(input, eval_set: eval_set) @global_mean = model.bias @user_factors = model.p_factors(format: :numo) @item_factors = model.q_factors(format: :numo) @user_index = nil @item_index = nil end |
#optimize_similar_items ⇒ Object Also known as: optimize_item_recs
133 134 135 136 |
# File 'lib/disco/recommender.rb', line 133 def optimize_similar_items check_fit @item_index = create_index(@item_factors) end |
#optimize_similar_users ⇒ Object
139 140 141 142 |
# File 'lib/disco/recommender.rb', line 139 def optimize_similar_users check_fit @user_index = create_index(@user_factors) end |
#predict(data) ⇒ Object
generates a prediction even if a user has already rated the item
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'lib/disco/recommender.rb', line 75 def predict(data) data = to_dataset(data) u = data.map { |v| @user_map[v[:user_id]] } i = data.map { |v| @item_map[v[:item_id]] } new_index = data.each_index.select { |index| u[index].nil? || i[index].nil? } new_index.each do |j| u[j] = 0 i[j] = 0 end predictions = @user_factors[u, true].inner(@item_factors[i, true]) predictions.inplace.clip(, ) if predictions[new_index] = @global_mean predictions.to_a end |
#similar_items(item_id, count: 5) ⇒ Object Also known as: item_recs
144 145 146 147 |
# File 'lib/disco/recommender.rb', line 144 def similar_items(item_id, count: 5) check_fit similar(item_id, @item_map, @item_factors, item_norms, count, @item_index) end |
#similar_users(user_id, count: 5) ⇒ Object
150 151 152 153 |
# File 'lib/disco/recommender.rb', line 150 def similar_users(user_id, count: 5) check_fit similar(user_id, @user_map, @user_factors, user_norms, count, @user_index) end |
#user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# File 'lib/disco/recommender.rb', line 93 def user_recs(user_id, count: 5, item_ids: nil) check_fit u = @user_map[user_id] if u predictions = @item_factors.inner(@user_factors[u, true]) predictions = @item_map.keys.zip(predictions).map do |item_id, pred| {item_id: item_id, score: pred} end if item_ids idx = item_ids.map { |i| @item_map[i] }.compact predictions = predictions.values_at(*idx) else @rated[u].keys.sort_by { |v| -v }.each do |i| predictions.delete_at(i) end end predictions.sort_by! { |pred| -pred[:score] } # already sorted by id predictions = predictions.first(count) if count && !item_ids # clamp *after* sorting # also, only needed for returned predictions if predictions.each do |pred| pred[:score] = pred[:score].clamp(, ) end end predictions else # no items if user is unknown # TODO maybe most popular items [] end end |