Class: Desiru::Optimizers::MIPROv2
- Defined in:
- lib/desiru/optimizers/mipro_v2.rb
Overview
MIPROv2 - Multi-objective Instruction Prompt Optimization v2 Uses Bayesian optimization to optimize prompts and demonstrations across multiple objectives
Defined Under Namespace
Classes: GaussianProcess
Instance Attribute Summary collapse
-
#optimization_history ⇒ Object
readonly
Returns the value of attribute optimization_history.
-
#pareto_frontier ⇒ Object
readonly
Returns the value of attribute pareto_frontier.
-
#trace_collector ⇒ Object
readonly
Returns the value of attribute trace_collector.
Attributes inherited from Base
Instance Method Summary collapse
- #compile(program, trainset:, valset: nil) ⇒ Object
- #evaluate_module_config(module_instance, instruction, demos, examples) ⇒ Object
- #generate_demonstration_sets(_module_instance, examples) ⇒ Object
- #generate_instruction_variants(module_instance, _examples) ⇒ Object
-
#initialize(metric: :exact_match, objectives: nil, **config) ⇒ MIPROv2
constructor
A new instance of MIPROv2.
- #optimize_module(module_instance, examples) ⇒ Object
Methods inherited from Base
Constructor Details
#initialize(metric: :exact_match, objectives: nil, **config) ⇒ MIPROv2
Returns a new instance of MIPROv2.
12 13 14 15 16 17 18 19 20 21 22 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 12 def initialize(metric: :exact_match, objectives: nil, **config) super(metric: metric, **config) @objectives = normalize_objectives(objectives || [metric]) @optimization_history = [] @pareto_frontier = [] @gaussian_process = GaussianProcess.new @acquisition_function = config[:acquisition_function] || :expected_improvement @trace_collector = config[:trace_collector] || Core.trace_collector @instruction_candidates = [] @demonstration_candidates = [] end |
Instance Attribute Details
#optimization_history ⇒ Object (readonly)
Returns the value of attribute optimization_history.
10 11 12 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 10 def optimization_history @optimization_history end |
#pareto_frontier ⇒ Object (readonly)
Returns the value of attribute pareto_frontier.
10 11 12 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 10 def pareto_frontier @pareto_frontier end |
#trace_collector ⇒ Object (readonly)
Returns the value of attribute trace_collector.
10 11 12 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 10 def trace_collector @trace_collector end |
Instance Method Details
#compile(program, trainset:, valset: nil) ⇒ Object
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 24 def compile(program, trainset:, valset: nil) trace_optimization('Starting MIPROv2 optimization', { trainset_size: trainset.size, valset_size: valset&.size || 0, objectives: @objectives.map(&:to_s), config: config }) begin # Initialize optimization state @current_program = deep_copy_program(program) @trainset = trainset @valset = valset || trainset @iteration = 0 # Clear trace collector for fresh optimization @trace_collector.clear if config[:clear_traces] # Enable tracing on all modules enable_program_tracing(@current_program) # Run Bayesian optimization loop while @iteration < config[:max_iterations] && !should_stop? @iteration += 1 trace_optimization("Iteration #{@iteration}", { phase: 'start' }) # Generate candidates using acquisition function candidates = generate_candidates # Evaluate candidates evaluated_candidates = evaluate_candidates(candidates) # Update Gaussian Process with results update_gaussian_process(evaluated_candidates) # Update Pareto frontier for multi-objective optimization update_pareto_frontier(evaluated_candidates) # Select best candidate best_candidate = select_best_candidate(evaluated_candidates) # Apply best candidate to program apply_candidate(@current_program, best_candidate) if best_candidate # Log iteration results - always log even if no best candidate if best_candidate log_iteration_results(best_candidate, evaluated_candidates) elsif evaluated_candidates.any? # Log with the first candidate if no best found log_iteration_results(evaluated_candidates.first, evaluated_candidates) end end # Restore trace state disable_program_tracing(@current_program) if config[:restore_trace_state] # Return optimized program @current_program rescue StandardError => e trace_optimization('Optimization failed', { error: e., backtrace: e.backtrace.first(3) }) begin disable_program_tracing(@current_program) if config[:restore_trace_state] rescue StandardError nil end # Return original program on error program ensure # Always disable tracing at the end if enabled begin disable_program_tracing(@current_program) if config[:restore_trace_state] rescue StandardError nil end end end |
#evaluate_module_config(module_instance, instruction, demos, examples) ⇒ Object
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 168 def evaluate_module_config(module_instance, instruction, demos, examples) # Simple evaluation - could be enhanced test_module = module_instance.with_demos(demos) test_module.instruction = instruction if test_module.respond_to?(:instruction=) && instruction # Evaluate on subset of examples eval_examples = examples.sample([examples.size, 5].min) scores = eval_examples.map do |ex| # Extract inputs (exclude answer/output fields) inputs = {} ex.to_h.each do |k, v| inputs[k] = v unless i[answer output].include?(k) end result = test_module.call(inputs) score_prediction(result, ex) rescue StandardError 0.0 end scores.empty? ? 0.0 : scores.sum.to_f / scores.size end |
#generate_demonstration_sets(_module_instance, examples) ⇒ Object
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 146 def generate_demonstration_sets(_module_instance, examples) return [[]] if examples.empty? # Generate different demo sets sets = [] # Empty set sets << [] # Random subset [1, 2, 3].each do |count| break if count > examples.size sets << examples.sample(count) end # Diverse set sets << select_diverse_demonstrations(examples, [examples.size, 3].min, Random.new) if examples.size > 1 sets end |
#generate_instruction_variants(module_instance, _examples) ⇒ Object
136 137 138 139 140 141 142 143 144 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 136 def generate_instruction_variants(module_instance, _examples) # Generate different instruction styles signature = module_instance.signature [ generate_instruction(signature, 'concise', 0.2), generate_instruction(signature, 'detailed', 0.5), generate_instruction(signature, 'step-by-step', 0.8) ] end |
#optimize_module(module_instance, examples) ⇒ Object
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# File 'lib/desiru/optimizers/mipro_v2.rb', line 102 def optimize_module(module_instance, examples) trace_optimization('Optimizing module with MIPROv2', { module: module_instance.class.name, examples_count: examples.size }) # Generate instruction variants instruction_variants = generate_instruction_variants(module_instance, examples) # Generate demonstration sets demo_sets = generate_demonstration_sets(module_instance, examples) # Evaluate all combinations best_config = nil best_score = -Float::INFINITY instruction_variants.each do |instruction| demo_sets.each do |demos| score = evaluate_module_config(module_instance, instruction, demos, examples) if score > best_score best_score = score best_config = { instruction: instruction, demos: demos } end end end # Create optimized module optimized = module_instance.with_demos(best_config[:demos]) optimized.instruction = best_config[:instruction] if optimized.respond_to?(:instruction=) optimized end |