Class: DataStructuresRMolinari::MaxPrioritySearchTree
- Inherits:
-
Object
- Object
- DataStructuresRMolinari::MaxPrioritySearchTree
- Includes:
- BinaryTreeArithmetic, Shared
- Defined in:
- lib/data_structures_rmolinari/max_priority_search_tree.rb
Overview
A priority search tree (PST) stores a set, P, of two-dimensional points (x,y) in a way that allows efficient answers to certain questions about P.
The data structure was introduced in 1985 by Edward McCreight. Later, De, Maheshwari, Nandy, and Smid showed how to construct a PST in-place (using only O(1) extra memory), at the expense of some slightly more complicated code for the various supported operations. It is their approach that we have implemented.
The PST structure is an implicit, balanced binary tree with the following properties:
-
The tree is a max-heap in the y coordinate. That is, the point at each node has a y-value no greater than its parent.
-
For each node p, the x-values of all the nodes in the left subtree of p are less than the x-values of all the nodes in the right subtree of p. Note that this says nothing about the x-value at the node p itself. The tree is thus almost a binary search tree in the x coordinate.
Given a set of n points, we can answer the following questions quickly:
-
smallest_x_in_ne: for x0 and y0, what is the leftmost point (x, y) in P satisfying x >= x0 and y >= y0? -
largest_x_in_nw: for x0 and y0, what is the rightmost point (x, y) in P satisfying x <= x0 and y >= y0? -
largest_y_in_ne: for x0 and y0, what is the highest point (x, y) in P satisfying x >= x0 and y >= y0? -
largest_y_in_nw: for x0 and y0, what is the highest point (x, y) in P satisfying x <= x0 and y >= y0? -
largest_y_in_3_sided: for x0, x1, and y0, what is the highest point (x, y) in P satisfying x >= x0, x <= x1 and y >= y0? -
enumerate_3_sided: for x0, x1, and y0, enumerate all points in P satisfying x >= x0, x <= x1 and y >= y0.
(Here, “leftmost/rightmost” means “minimal/maximal x”, and “highest” means “maximal y”.)
The first 5 operations take O(log n) time.
The final operation (enumerate) takes O(m + log n) time, where m is the number of points that are enumerated.
If the MaxPST is constructed to be “dynamic” we also have an operation that deletes the top element.
-
delete_top!: remove the top (max-y) element of the tree and return it.
It runs in O(log n) time, where n is the size of the PST when it was initially created.
In the current implementation no two points can share an x-value. This restriction can be relaxed with some more complicated code, but it hasn’t been written yet. See issue #9.
There is a related data structure called the Min-max priority search tree so we have called this a “Max priority search tree”, or MaxPST.
References:
-
E.M. McCreight, _Priority search trees_, SIAM J. Comput., 14(2):257-276, 1985.
-
De, A. Maheshwari, S. C. Nandy, M. Smid, _An In-Place Priority Search Tree_, 23rd Canadian Conference on Computational
Geometry, 2011
-
Constant Summary
Constants included from Shared
Instance Method Summary collapse
-
#delete_top! ⇒ Point
Delete the top (max-y) element of the PST.
- #empty? ⇒ Boolean
-
#enumerate_3_sided(x0, x1, y0) ⇒ Object
Enumerate the points of P in the box bounded by x0, x1, and y0.
-
#initialize(data, dynamic: false, verify: false) ⇒ MaxPrioritySearchTree
constructor
Construct a MaxPST from the collection of points in
data. -
#largest_x_in_nw(x0, y0) ⇒ Object
Return the rightmost (max-x) point in P to the northwest of (x0, y0).
-
#largest_y_in_3_sided(x0, x1, y0) ⇒ Object
Return the highest point of P in the box bounded by x0, x1, and y0.
-
#largest_y_in_ne(x0, y0) ⇒ Object
Return the highest point in P to the “northeast” of (x0, y0).
-
#largest_y_in_nw(x0, y0) ⇒ Object
Return the highest point in P to the “northwest” of (x0, y0).
-
#smallest_x_in_ne(x0, y0) ⇒ Object
Return the leftmost (min-x) point in P to the northeast of (x0, y0).
Methods included from Shared
Constructor Details
#initialize(data, dynamic: false, verify: false) ⇒ MaxPrioritySearchTree
Construct a MaxPST from the collection of points in data.
66 67 68 69 70 71 72 73 74 75 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 66 def initialize(data, dynamic: false, verify: false) @data = data @size = @data.size @member_count = @size # these can diverge for dynamic PSTs @dynamic = dynamic construct_pst verify_properties if verify end |
Instance Method Details
#delete_top! ⇒ Point
Delete the top (max-y) element of the PST. This is possible only for dynamic PSTs
It runs in guaranteed O(log n) time, where n is the size of the PST when it was intially constructed. As elements are deleted the internal tree structure is no longer guaranteed to be balanced and so we cannot guarantee operation in O(log n’) time, where n’ is the current size. In practice, “random” deletion is likely to leave the tree almost balanced.
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 1045 def delete_top! raise LogicError, 'delete_top! not supported for PSTs that are not dynamic' unless dynamic? raise DataError, 'delete_top! not possible for empty PSTs' unless @member_count.positive? i = root while !leaf?(i) if (child = one_child?(i)) next_node = child else next_node = left(i) if better_y?(right(i), next_node) next_node = right(i) end end swap(i, next_node) i = next_node end @member_count -= 1 @data[i] end |
#empty? ⇒ Boolean
77 78 79 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 77 def empty? @member_count.zero? end |
#enumerate_3_sided(x0, x1, y0) ⇒ Object
Enumerate the points of P in the box bounded by x0, x1, and y0.
Let Q = [x0, x1] X [y0, infty) be the “three-sided” box bounded by x0, x1, and y0, and let P be the set of points in the MaxPST. (Note that Q is empty if x1 < x0.) We find an enumerate all the points in Q intersect P.
If the calling code provides a block then we yield each point to it. Otherwise we return a set containing all the points in the intersection.
This method runs in O(m + log n) time and O(1) extra space, where m is the number of points found.
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 582 def enumerate_3_sided(x0, x1, y0) # From the paper # # Given three real numbers x0, x1, and y0 define the three sided range Q = [x0, x1] X [y0, infty). Algorithm # Enumerage3Sided(x0, x1,y0) returns all elements of Q \intersect P. The algorithm uses the same approach as algorithm # Highest3Sided. Besides the two bits L and R it uses two additional bits L' and R'. Each of these four bits ... corresponds # to a subtree of T rooted at the points p, p', q, and q', respectively; if the bit is equal to one, then the subtree may # contain points that are in the query range Q. # # The following variant will be maintained: # # - If L = 1 then x(p) < x0. # - If L' = 1 then x0 <= x(p') <= x1. # - If R = 1 then x(q) > x1. # - If R' = 1 then x0 <= x(q') <= x1. # - If L' = 1 and R' = 1 then x(p') <= x(q'). # - All points in Q \intersect P [other than those in the subtrees of the currently active search nodes] have been reported. # # # My high-level understanding of the algorithm # -------------------------------------------- # # We need to find all elements of Q \intersect P, so it isn't enough, as it was in largest_y_in_3_sided simply to keep track of p and # q. We need to track four nodes, p, p', q', and q which are (with a little handwaving) respectively # # - the rightmost node to the left of Q' = [x0, x1] X [-infinity, infinity], # - the leftmost node inside Q', # - the rightmost node inside Q', and # - the leftmost node to the right of Q'. # # Tracking these is enough. Subtrees of things to the left of p can't have anything in Q by the x-value properties of the PST, # and likewise with things to the right of q. # # And we don't need to track any more nodes inside Q'. If we had r with p' <~ r <~ q' (where s <~ t represents "t is to the # right of s"), then all of the subtree rooted at r lies inside Q', and we can visit all of its elements of Q \intersect P via # the routine Explore(), which is what we do whenever we need to. The node r is thus exhausted, and we can forget about it. # # So the algorithm is actually quite simple. There is a large amount of code here because of the many cases that need to be # handled at each update. # # If a block is given, yield each found point to it. Otherwise return all the found points in an enumerable (currently Set). x_range = x0..x1 # Instead of using primes we use "_in" left = left_in = right_in = right = false p = p_in = q_in = q = nil result = Set.new if empty? return if block_given? return result end report = lambda do |node| if block_given? yield @data[node] else result << @data[node] end end # "reports all points in T_t whose y-coordinates are at least y0" # # We follow the logic from the min-max paper, leaving out the need to worry about the parity of the leval and the min- or max- # switching. explore = lambda do |t| current = t state = 0 while current != t || state != 2 case state when 0 # State 0: we have arrived at this node for the first time # look at current and perhaps descend to left child # The paper describes this algorithm as in-order, but isn't this pre-order? if @data[current].y >= y0 report.call(current) end if !leaf?(current) && in_tree?(left(current)) && @data[left(current)].y >= y0 current = left(current) else state = 1 end when 1 # State 1: we've already handled this node and its left subtree. Should we descend to the right subtree? if in_tree?(right(current)) && @data[right(current)].y >= y0 current = right(current) state = 0 else state = 2 end when 2 # State 2: we're done with this node and its subtrees. Go back up a level, having set state correctly for the logic at the # parent node. if left_child?(current) state = 1 end current = parent(current) else raise InternalLogicError, "Explore(t) state is somehow #{state} rather than 0, 1, or 2." end end end # Helpers for the helpers # # Invariant: if q_in is active then p_in is active. In other words, if only one "inside" node is active then it is p_in. # Mark p_in as inactive. Then, if q_in is active, it becomes p_in. deactivate_p_in = lambda do left_in = false return unless right_in p_in = q_in left_in = true right_in = false end # Add a new leftmost "in" point. This becomes p_in. We handle existing "inside" points appropriately add_leftmost_inner_node = lambda do |node| if left_in && right_in # the old p_in is squeezed between node and q_in explore.call(p_in) elsif left_in q_in = p_in right_in = true else left_in = true end p_in = node end add_rightmost_inner_node = lambda do |node| if left_in && right_in # the old q_in is squeezed between p_in and node explore.call(q_in) q_in = node elsif left_in q_in = node right_in = true else p_in = node left_in = true end end ######################################## # The four key helpers described in the paper # Handle the next step of the subtree at p enumerate_left = lambda do if leaf?(p) left = false return end if (only_child = one_child?(p)) child_val = @data[only_child] if x_range.cover? child_val.x add_leftmost_inner_node.call(only_child) left = false elsif child_val.x < x0 p = only_child else q = only_child right = true left = false end return end # p has two children if @data[left(p)].x < x0 if @data[right(p)].x < x0 p = right(p) elsif @data[right(p)].x <= x1 add_leftmost_inner_node.call(right(p)) p = left(p) else q = right(p) p = left(p) right = true end elsif @data[left(p)].x <= x1 if @data[right(p)].x > x1 q = right(p) p_in = left(p) left = false left_in = right = true else # p_l and p_r both lie inside [x0, x1] add_leftmost_inner_node.call(right(p)) add_leftmost_inner_node.call(left(p)) left = false end else q = left(p) left = false right = true end end # Given: p' satisfied x0 <= x(p') <= x1. (Our p_in is the paper's p') enumerate_left_in = lambda do if @data[p_in].y >= y0 report.call(p_in) end if leaf?(p_in) # nothing more to do deactivate_p_in.call return end if (only_child = one_child?(p_in)) child_val = @data[only_child] if x_range.cover? child_val.x p_in = only_child elsif child_val.x < x0 # We aren't in the [x0, x1] zone any more and have moved out to the left p = only_child deactivate_p_in.call left = true else # similar, but we've moved out to the right. Note that left(p_in) is the leftmost node to the right of Q. raise 'q_in should not be active (by the val of left(p_in))' if right_in q = only_child deactivate_p_in.call right = true end else # p' has two children left_val = @data[left(p_in)] right_val = @data[right(p_in)] if left_val.x < x0 if right_val.x < x0 p = right(p_in) left = true deactivate_p_in.call elsif right_val.x <= x1 p = left(p_in) p_in = right(p_in) left = true else raise InternalLogicError, 'q_in cannot be active, by the value in the right child of p_in!' if right_in p = left(p_in) q = right(p_in) deactivate_p_in.call left = true right = true end elsif left_val.x <= x1 if right_val.x > x1 raise InternalLogicError, 'q_in cannot be active, by the value in the right child of p_in!' if right_in q = right(p_in) p_in = left(p_in) right = true elsif right_in explore.call(right(p_in)) p_in = left(p_in) else q_in = right(p_in) p_in = left(p_in) right_in = true end else raise InternalLogicError, 'q_in cannot be active, by the value in the right child of p_in!' if right_in q = left(p_in) deactivate_p_in.call right = true end end end # This is "just like" enumerate left, but handles q instead of p. # # The paper doesn't given an implementation, but it should be pretty symmetric. Can we share any logic with enumerate_left? # # Q: why is my implementation more complicated than enumerate_left? I must be missing something. enumerate_right = lambda do if leaf?(q) right = false return end if (only_child = one_child?(q)) child_val = @data[only_child] if x_range.cover? child_val.x add_rightmost_inner_node.call(only_child) right = false elsif child_val.x < x0 p = only_child left = true right = false else q = only_child end return end # q has two children. Cases! if @data[left(q)].x < x0 raise InternalLogicError, 'p_in should not be active, based on the value at left(q)' if left_in raise InternalLogicError, 'q_in should not be active, based on the value at left(q)' if right_in left = true if @data[right(q)].x < x0 p = right(q) right = false elsif @data[right(q)].x <= x1 p_in = right(q) p = left(q) left_in = true right = false else p = left(q) q = right(q) end elsif @data[left(q)].x <= x1 add_rightmost_inner_node.call(left(q)) if @data[right(q)].x > x1 q = right(q) else add_rightmost_inner_node.call(right(q)) right = false end else # x(q_l) > x1 q = left(q) end end # Given: q' is active and satisfied x0 <= x(q') <= x1 enumerate_right_in = lambda do raise InternalLogicError, 'right_in should be true if we call enumerate_right_in' unless right_in if @data[q_in].y >= y0 report.call(q_in) end if leaf?(q_in) right_in = false return end if (only_child = one_child?(q_in)) child_val = @data[only_child] if x_range.cover? child_val.x q_in = only_child elsif child_val.x < x0 # We have moved out to the left p = only_child right_in = false left = true else # We have moved out to the right q = only_child right_in = false right = true end return end # q' has two children left_val = @data[left(q_in)] right_val = @data[right(q_in)] if left_val.x < x0 raise InternalLogicError, 'p_in cannot be active, by the value in the left child of q_in' if left_in if right_val.x < x0 p = right(q_in) elsif right_val.x <= x1 p = left(q_in) p_in = right(q_in) # should this be q_in = right(q_in) ?? left_in = true else p = left(q_in) q = right(q_in) right = true end right_in = false left = true elsif left_val.x <= x1 if right_val.x > x1 q = right(q_in) right = true if left_in q_in = left(q_in) else p_in = left(q_in) left_in = true right_in = false end else if left_in explore.call(left(q_in)) else p_in = left(q_in) left_in = true end q_in = right(q_in) end else q = left(q_in) right_in = false right = true end end val = ->(sym) { { left: p, left_in: p_in, right_in: q_in, right: q }[sym] } root_val = @data[root] if root_val.y < y0 # no hope, no op elsif root_val.x < x0 p = root left = true elsif root_val.x <= x1 # Possible bug in paper, which tests "< x1" p_in = root left_in = true else q = root right = 1 end while left || left_in || right_in || right raise InternalLogicError, 'It should not be that q_in is active but p_in is not' if right_in && !left_in set_i = [] set_i << :left if left set_i << :left_in if left_in set_i << :right_in if right_in set_i << :right if right z = set_i.min_by { |sym| level(val.call(sym)) } case z when :left enumerate_left.call when :left_in enumerate_left_in.call when :right_in enumerate_right_in.call when :right enumerate_right.call else raise InternalLogicError, "bad symbol #{z}" end end return result unless block_given? end |
#largest_x_in_nw(x0, y0) ⇒ Object
Return the rightmost (max-x) point in P to the northwest of (x0, y0).
Let Q = (-infty, x0] X [y0, infty) be the northwest quadrant defined by the point (x0, y0) and let P be the points in this data structure. Define p* as
-
(-infty, infty) if Q intersect P is empty and
-
the leftmost (min-x) point in Q intersect P otherwise.
This method returns p* in O(log n) time and O(1) extra space.
223 224 225 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 223 def largest_x_in_nw(x0, y0) extremal_in_x_dimension(x0, y0, :nw) end |
#largest_y_in_3_sided(x0, x1, y0) ⇒ Object
Return the highest point of P in the box bounded by x0, x1, and y0.
Let Q = [x0, x1] X [y0, infty) be the “three-sided” box bounded by x0, x1, and y0, and let P be the set of points in the MaxPST. (Note that Q is empty if x1 < x0.) Define p* as
-
(infty, -infty) if Q intersect P is empty and
-
the highest (max-y) point in Q intersect P otherwise, breaking ties by preferring smaller x values.
This method returns p* in O(log n) time and O(1) extra space.
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 379 def largest_y_in_3_sided(x0, x1, y0) # From the paper: # # The three real numbers x0, x1, and y0 define the three-sided range Q = [x0,x1] X [y0,∞). If Q \intersect P̸ is not \empty, # define p* to be the highest point of P in Q. If Q \intersect P = \empty, define p∗ to be the point (infty, -infty). # Algorithm Highest3Sided(x0,x1,y0) returns the point p∗. # # The algorithm uses two bits L and R, and three variables best, p, and q. As before, best stores the highest point in Q # found so far. The bit L indicates whether or not p∗ may be in the subtree of p; if L=1, then p is to the left of # Q. Similarly, the bit R indicates whether or not p∗ may be in the subtree of q; if R=1, then q is to the right of Q. # # Although there are a lot of lines and cases the overall idea is simple. We maintain in p the rightmost node at its level that # is to the left of the area Q. Likewise, q is the leftmost node that is the right of Q. The logic just updates this data at # each step. The helper check_left updates p and check_right updates q. # # A couple of simple observations that show why maintaining just these two points is enough. # # - We know that x(p) < x0. This tells us nothing about the x values in the subtrees of p (which is why we need to check various # cases), but it does tell us that everything to the left of p has values of x that are too small to bother with. # - We don't need to maintain any state inside the region Q because the max-heap property means that if we ever find a node r in # Q we check it for best and then ignore its subtree (which cannot beat r on y-value). # # Sometimes we don't have a relevant node to the left or right of Q. The booleans L and R (which we call left and right) track # whether p and q are defined at the moment. best = Point.new(INFINITY, -INFINITY) return best if empty? p = q = left = right = nil x_range = (x0..x1) in_q = lambda do |pair| x_range.cover?(pair.x) && pair.y >= y0 end # From the paper: # # takes as input a point t and does the following: if t \in Q and x(t) < x(best) then it assignes best = t # # Note that the paper identifies a node in the tree with its value. We need to grab the correct node. update_highest = lambda do |node| t = @data[node] if in_q.call(t) && (t.y > best.y || (t.y == best.y && t.x < best.x)) best = t end end # "Input: a node p such that x(p) < x0"" # # Step-by-step it is pretty straightforward. As the paper says # # [E]ither p moves one level down in the tree T or the bit L is set to 0. In addition, the point q either stays the same or it # become a child of (the original) p. check_left = lambda do if leaf?(p) left = false elsif (only_child = one_child?(p)) if x_range.cover? @data[only_child].x update_highest.call(only_child) left = false # can't do y-better in the subtree elsif @data[only_child].x < x0 p = only_child else q = only_child right = true left = false end else # p has two children if @data[left(p)].x < x0 if @data[right(p)].x < x0 p = right(p) elsif @data[right(p)].x <= x1 update_highest.call(right(p)) p = left(p) else # x(p_r) > x1, so q needs to take it q = right(p) p = left(p) right = true end elsif @data[left(p)].x <= x1 update_highest.call(left(p)) left = false # we won't do better in T(p_l) if @data[right(p)].x > x1 q = right(p) right = true else update_highest.call(right(p)) end else q = left(p) left = false right = true end end end # Do "on the right" with q what check_left does on the left with p # # We know that x(q) > x1 # # TODO: can we share logic between check_left and check_right? At first glance they are too different to parameterize but maybe # the bones can be shared. # # We either push q further down the tree or make right = false. We might also make p a child of (original) q. We never change # left from true to false check_right = lambda do if leaf?(q) right = false elsif (only_child = one_child?(q)) if x_range.cover? @data[only_child].x update_highest.call(only_child) right = false # can't do y-better in the subtree elsif @data[only_child].x < x0 p = only_child left = true right = false else q = only_child end else # q has two children if @data[left(q)].x < x0 left = true if @data[right(q)].x < x0 p = right(q) right = false elsif @data[right(q)].x <= x1 update_highest.call(right(q)) p = left(q) right = false else # x(q_r) > x1 p = left(q) q = right(q) # left = true end elsif @data[left(q)].x <= x1 update_highest.call(left(q)) if @data[right(q)].x > x1 q = right(q) else update_highest.call(right(q)) right = false end else q = left(q) end end end return best if empty? root_val = @data[root] # If the root value is in the region Q, the max-heap property on y means we can't do better if x_range.cover? root_val.x # If y(root) is large enough then the root is the winner because of the max heap property in y. And if it isn't large enough # then no other point in the tree can be high enough either left = right = false best = root_val if root_val.y >= y0 end if root_val.x < x0 p = root left = true right = false else q = root left = false right = true end val = ->(sym) { sym == :left ? p : q } while left || right set_i = [] set_i << :left if left set_i << :right if right z = set_i.min_by { |s| level(val.call(s)) } if z == :left check_left.call else check_right.call end end best end |
#largest_y_in_ne(x0, y0) ⇒ Object
Return the highest point in P to the “northeast” of (x0, y0).
Let Q = [x0, infty) X [y0, infty) be the northeast quadrant defined by the point (x0, y0) and let P be the points in this data structure. Define p* as
-
(infty, -infty) if Q intersect P is empty and
-
the highest (max-y) point in Q intersect P otherwise, breaking ties by preferring smaller values of x
This method returns p* in O(log n) time and O(1) extra space.
93 94 95 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 93 def largest_y_in_ne(x0, y0) largest_y_in_quadrant(x0, y0, :ne) end |
#largest_y_in_nw(x0, y0) ⇒ Object
Return the highest point in P to the “northwest” of (x0, y0).
Let Q = (-infty, x0] X [y0, infty) be the northwest quadrant defined by the point (x0, y0) and let P be the points in this data structure. Define p* as
-
(-infty, -infty) if Q intersect P is empty and
-
the highest (max-y) point in Q intersect P otherwise, breaking ties by preferring smaller values of x
This method returns p* in O(log n) time and O(1) extra space.
106 107 108 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 106 def largest_y_in_nw(x0, y0) largest_y_in_quadrant(x0, y0, :nw) end |
#smallest_x_in_ne(x0, y0) ⇒ Object
Return the leftmost (min-x) point in P to the northeast of (x0, y0).
Let Q = [x0, infty) X [y0, infty) be the northeast quadrant defined by the point (x0, y0) and let P be the points in this data structure. Define p* as
-
(infty, infty) if Q intersect P is empty and
-
the leftmost (min-x) point in Q intersect P otherwise.
This method returns p* in O(log n) time and O(1) extra space.
210 211 212 |
# File 'lib/data_structures_rmolinari/max_priority_search_tree.rb', line 210 def smallest_x_in_ne(x0, y0) extremal_in_x_dimension(x0, y0, :ne) end |