Class: DaruLite::DataFrame
- Extended by:
- Gem::Deprecate
- Includes:
- Aggregatable, Calculatable, Convertible, Duplicatable, Fetchable, Filterable, IOAble, Indexable, Iterable, Joinable, Missable, Pivotable, Queryable, Setable, Sortable, Maths::Arithmetic::DataFrame, Maths::Statistics::DataFrame
- Defined in:
- lib/daru_lite/dataframe.rb,
lib/daru_lite/data_frame/setable.rb,
lib/daru_lite/data_frame/i_o_able.rb,
lib/daru_lite/data_frame/iterable.rb,
lib/daru_lite/data_frame/joinable.rb,
lib/daru_lite/data_frame/missable.rb,
lib/daru_lite/data_frame/sortable.rb,
lib/daru_lite/data_frame/fetchable.rb,
lib/daru_lite/data_frame/indexable.rb,
lib/daru_lite/data_frame/pivotable.rb,
lib/daru_lite/data_frame/queryable.rb,
lib/daru_lite/extensions/which_dsl.rb,
lib/daru_lite/data_frame/filterable.rb,
lib/daru_lite/data_frame/convertible.rb,
lib/daru_lite/data_frame/aggregatable.rb,
lib/daru_lite/data_frame/calculatable.rb,
lib/daru_lite/data_frame/duplicatable.rb
Overview
rubocop:disable Metrics/ClassLength
Defined Under Namespace
Modules: Aggregatable, Calculatable, Convertible, Duplicatable, Fetchable, Filterable, IOAble, Indexable, Iterable, Joinable, Missable, Pivotable, Queryable, Setable, Sortable
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
TOREMOVE.
-
#index ⇒ Object
readonly
The index of the rows of the DataFrame.
-
#name ⇒ Object
readonly
The name of the DataFrame.
-
#size ⇒ Object
readonly
The number of rows present in the DataFrame.
-
#vectors ⇒ Object
readonly
The vectors (columns) index of the DataFrame.
Class Method Summary collapse
-
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors - Rows - Columns - Values.
-
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of DaruLite::Vector objects.
Instance Method Summary collapse
- #==(other) ⇒ Object
-
#add_level_to_vectors(top_level_label) ⇒ Object
Converts the vectors to a DaruLite::MultiIndex.
- #add_vectors_by_split(name, join = '-', sep = DaruLite::SPLIT_TOKEN) ⇒ Object
- #add_vectors_by_split_recode(nm, join = '-', sep = DaruLite::SPLIT_TOKEN) ⇒ Object
-
#bootstrap(n = nil) ⇒ DaruLite::DataFrame
Creates a DataFrame with the random data, of n size.
-
#delete_at_position(position) ⇒ Object
Delete a row based on its position More robust than #delete_row when working with a CategoricalIndex or when the Index includes integers.
-
#delete_row(index) ⇒ Object
Delete a row.
-
#delete_vector(vector) ⇒ Object
Delete a vector.
-
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors.
-
#initialize(source = {}, opts = {}) ⇒ DataFrame
constructor
DataFrame basically consists of an Array of Vector objects.
-
#inspect(spacing = DaruLite.spacing, threshold = DaruLite.max_rows) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby).
- #interact_code(vector_names, full) ⇒ Object
- #method_missing(name, *args, &block) ⇒ Object
-
#ncols ⇒ Object
The number of vectors.
-
#nest(*tree_keys, &block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values.
-
#nrows ⇒ Object
The number of rows.
-
#rename(new_name) ⇒ Object
(also: #name=)
Rename the DataFrame.
-
#rename_vectors(name_map) ⇒ Object
Renames the vectors.
-
#rename_vectors!(name_map) ⇒ Object
Renames the vectors and returns itself.
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
-
#row ⇒ Object
Access a row or set/create a row.
-
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
-
#to_category(*names) ⇒ DaruLite::DataFrame
Converts the specified non category type vectors to category type vectors.
-
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
-
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc.
- #which(&block) ⇒ Object
Methods included from Maths::Statistics::DataFrame
#acf, #correlation, #count, #covariance, #cumsum, #describe, #ema, #max, #mean, #median, #min, #mode, #percent_change, #product, #range, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_variance, #standardize, #std, #sum, #variance_sample
Methods included from Maths::Arithmetic::DataFrame
#%, #*, #**, #+, #-, #/, #exp, #round, #sqrt
Methods included from Queryable
#all?, #any?, #has_vector?, #include_values?
Methods included from Sortable
#order=, #rotate_vectors, #sort, #sort!
Methods included from Setable
#[]=, #add_row, #add_vector, #insert_vector, #set_at, #set_row_at
Methods included from Pivotable
Methods included from Missable
#has_missing_data?, #missing_values_rows, #rolling_fillna, #rolling_fillna!
Methods included from Joinable
#concat, #join, #merge, #one_to_many, #union
Methods included from IOAble
#_dump, included, #save, #write_csv, #write_excel, #write_sql
Methods included from Iterable
#apply_method, #collect, #collect_matrix, #collect_row_with_index, #collect_rows, #collect_vector_with_index, #collect_vectors, #each, #each_index, #each_row, #each_row_with_index, #each_vector, #each_vector_with_index, #map, #map!, #map_rows, #map_rows!, #map_rows_with_index, #map_vectors, #map_vectors!, #map_vectors_with_index, #recode, #recode_rows, #recode_vectors, #replace_values, #verify
Methods included from Indexable
#index=, #reindex, #reindex_vectors, #reset_index, #set_index, #vectors=
Methods included from Filterable
#filter, #filter_rows, #filter_vector, #filter_vectors, #keep_row_if, #keep_vector_if, #reject_values, #uniq, #where
Methods included from Fetchable
#[], #access_row_tuples_by_indexs, #at, #get_sub_dataframe, #get_vector_anyways, #head, #numeric_vector_names, #numeric_vectors, #only_numerics, #row_at, #split_by_category, #tail
Methods included from Duplicatable
#clone, #clone_only_valid, #clone_structure, #dup, #dup_only_valid
Methods included from Convertible
#create_sql, #to_a, #to_df, #to_h, #to_html, #to_html_tbody, #to_html_thead, #to_json, #to_matrix, #to_s
Methods included from Calculatable
#compute, #summary, #vector_by_calculation, #vector_count_characters, #vector_mean, #vector_sum
Methods included from Aggregatable
#aggregate, #group_by, #group_by_and_aggregate
Constructor Details
#initialize(source = {}, opts = {}) ⇒ DataFrame
DataFrame basically consists of an Array of Vector objects. These objects are indexed by row and column by vectors and index Index objects.
Arguments
-
source - Source from the DataFrame is to be initialized. Can be a Hash
of names and vectors (array or DaruLite::Vector), an array of arrays or array of DaruLite::Vectors.
Options
:order - An Array/DaruLite::Index/DaruLite::MultiIndex containing the order in which Vectors should appear in the DataFrame.
:index - An Array/DaruLite::Index/DaruLite::MultiIndex containing the order in which rows of the DataFrame will be named.
:name - A name for the DataFrame.
:clone - Specify as true or false. When set to false, and Vector objects are passed for the source, the Vector objects will not duplicated when creating the DataFrame. Will have no effect if Array is passed in the source, or if the passed DaruLite::Vectors have different indexes. Default to true.
Usage
df = DaruLite::DataFrame.new
# =>
# <DaruLite::DataFrame(0x0)>
# Creates an empty DataFrame with no rows or columns.
df = DaruLite::DataFrame.new({}, order: [:a, :b])
#<DaruLite::DataFrame(0x2)>
a b
# Creates a DataFrame with no rows and columns :a and :b
df = DaruLite::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: [:a, :b, :c, :d], name: :spider_man)
# =>
# <DaruLite::DataFrame:80766980 @name = spider_man @size = 4>
# b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
df = DaruLite::DataFrame.new([[1,2,3,4],[6,7,8,9]], name: :bat_man)
# =>
# #<DaruLite::DataFrame: bat_man (4x2)>
# 0 1
# 0 1 6
# 1 2 7
# 2 3 8
# 3 4 9
# Dataframe having Index name
df = DaruLite::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: DaruLite::Index.new([:a, :b, :c, :d], name: 'idx_name'),
name: :spider_man)
# =>
# <DaruLite::DataFrame:80766980 @name = spider_man @size = 4>
# idx_name b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
idx = DaruLite::Index.new [100, 99, 101, 1, 2], name: "s1"
=> #<DaruLite::Index(5): s1 {100, 99, 101, 1, 2}>
df = DaruLite::DataFrame.new({b: [11,12,13,14,15], a: [1,2,3,4,5],
c: [11,22,33,44,55]},
order: [:a, :b, :c],
index: idx)
# =>
#<DaruLite::DataFrame(5x3)>
# s1 a b c
# 100 1 11 11
# 99 2 12 22
# 101 3 13 33
# 1 4 14 44
# 2 5 15 55
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# File 'lib/daru_lite/dataframe.rb', line 226 def initialize(source = {}, opts = {}) vectors = opts[:order] index = opts[:index] # FIXME: just keyword arges after Ruby 2.1 @data = [] @name = opts[:name] case source when [], {} create_empty_vectors(vectors, index) when Array initialize_from_array source, vectors, index, opts when Hash initialize_from_hash source, vectors, index, opts end set_size validate update end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
481 482 483 484 485 486 487 488 489 490 491 492 493 |
# File 'lib/daru_lite/dataframe.rb', line 481 def method_missing(name, *args, &block) if /(.+)=/.match?(name) name = name[/(.+)=/].delete('=') name = name.to_sym unless has_vector?(name) insert_or_modify_vector [name], args[0] elsif has_vector?(name) self[name] elsif has_vector?(name.to_s) self[name.to_s] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
TOREMOVE
126 127 128 |
# File 'lib/daru_lite/dataframe.rb', line 126 def data @data end |
#index ⇒ Object (readonly)
The index of the rows of the DataFrame
129 130 131 |
# File 'lib/daru_lite/dataframe.rb', line 129 def index @index end |
#name ⇒ Object (readonly)
The name of the DataFrame
132 133 134 |
# File 'lib/daru_lite/dataframe.rb', line 132 def name @name end |
#size ⇒ Object (readonly)
The number of rows present in the DataFrame
135 136 137 |
# File 'lib/daru_lite/dataframe.rb', line 135 def size @size end |
#vectors ⇒ Object (readonly)
The vectors (columns) index of the DataFrame
124 125 126 |
# File 'lib/daru_lite/dataframe.rb', line 124 def vectors @vectors end |
Class Method Details
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors
-
Rows
-
Columns
-
Values
For example, you have these values
x y v
a a 0
a b 1
b a 1
b b 0
You obtain
id a b
a 0 1
b 1 0
Useful to process outputs from databases
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# File 'lib/daru_lite/dataframe.rb', line 82 def crosstab_by_assignation(rows, columns, values) raise 'Three vectors should be equal size' if rows.size != columns.size || rows.size != values.size data = Hash.new do |h, col| h[col] = rows.factors.map { |r| [r, nil] }.to_h end columns.zip(rows, values).each { |c, r, v| data[c][r] = v } # FIXME: in fact, WITHOUT this line you'll obtain more "right" # data: with vectors having "rows" as an index... data = data.transform_values(&:values) data[:_id] = rows.factors DataFrame.new(data) end |
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of DaruLite::Vector objects.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/daru_lite/dataframe.rb', line 48 def rows(source, opts = {}) raise SizeError, 'All vectors must have same length' \ unless source.all? { |v| v.size == source.first.size } opts[:order] ||= guess_order(source) if ArrayHelper.array_of?(source, Array) || source.empty? DataFrame.new(source.transpose, opts) elsif ArrayHelper.array_of?(source, Vector) from_vector_rows(source, opts) else raise ArgumentError, "Can't create DataFrame from #{source}" end end |
Instance Method Details
#==(other) ⇒ Object
456 457 458 459 460 461 462 |
# File 'lib/daru_lite/dataframe.rb', line 456 def ==(other) self.class == other.class && @size == other.size && @index == other.index && @vectors == other.vectors && @vectors.to_a.all? { |v| self[v] == other[v] } end |
#add_level_to_vectors(top_level_label) ⇒ Object
Converts the vectors to a DaruLite::MultiIndex. The argument passed is used as the MultiIndex’s top level
397 398 399 400 |
# File 'lib/daru_lite/dataframe.rb', line 397 def add_level_to_vectors(top_level_label) tuples = vectors.map { |label| [top_level_label, *label] } self.vectors = DaruLite::MultiIndex.from_tuples(tuples) end |
#add_vectors_by_split(name, join = '-', sep = DaruLite::SPLIT_TOKEN) ⇒ Object
334 335 336 337 338 |
# File 'lib/daru_lite/dataframe.rb', line 334 def add_vectors_by_split(name, join = '-', sep = DaruLite::SPLIT_TOKEN) self[name] .split_by_separator(sep) .each { |k, v| self[:"#{name}#{join}#{k}"] = v } end |
#add_vectors_by_split_recode(nm, join = '-', sep = DaruLite::SPLIT_TOKEN) ⇒ Object
402 403 404 405 406 407 408 409 |
# File 'lib/daru_lite/dataframe.rb', line 402 def add_vectors_by_split_recode(nm, join = '-', sep = DaruLite::SPLIT_TOKEN) self[nm] .split_by_separator(sep) .each_with_index do |(k, v), i| v.rename "#{nm}:#{k}" self[:"#{nm}#{join}#{i + 1}"] = v end end |
#bootstrap(n = nil) ⇒ DaruLite::DataFrame
Creates a DataFrame with the random data, of n size. If n not given, uses original number of rows.
302 303 304 305 306 307 308 309 310 |
# File 'lib/daru_lite/dataframe.rb', line 302 def bootstrap(n = nil) n ||= nrows DaruLite::DataFrame.new({}, order: @vectors).tap do |df_boot| n.times do df_boot.add_row(row[rand(n)]) end df_boot.update end end |
#delete_at_position(position) ⇒ Object
Delete a row based on its position More robust than #delete_row when working with a CategoricalIndex or when the Index includes integers
289 290 291 292 293 294 295 296 |
# File 'lib/daru_lite/dataframe.rb', line 289 def delete_at_position(position) raise IndexError, "Position #{position} does not exist." unless position < size each_vector { |vector| vector.delete_at_position(position) } @index = @index.delete_at(position) set_size end |
#delete_row(index) ⇒ Object
Delete a row
273 274 275 276 277 278 279 280 281 282 283 284 |
# File 'lib/daru_lite/dataframe.rb', line 273 def delete_row(index) idx = named_index_for index raise IndexError, "Index #{index} does not exist." unless @index.include? idx @index = DaruLite::Index.new(@index.to_a - [idx]) each_vector do |vector| vector.delete_at idx end set_size end |
#delete_vector(vector) ⇒ Object
Delete a vector
256 257 258 259 260 261 262 263 |
# File 'lib/daru_lite/dataframe.rb', line 256 def delete_vector(vector) raise IndexError, "Vector #{vector} does not exist." unless @vectors.include?(vector) @data.delete_at @vectors[vector] @vectors = DaruLite::Index.new @vectors.to_a - [vector] self end |
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors
266 267 268 269 270 |
# File 'lib/daru_lite/dataframe.rb', line 266 def delete_vectors(*vectors) Array(vectors).each { |vec| delete_vector vec } self end |
#inspect(spacing = DaruLite.spacing, threshold = DaruLite.max_rows) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# File 'lib/daru_lite/dataframe.rb', line 439 def inspect(spacing = DaruLite.spacing, threshold = DaruLite.max_rows) name_part = @name ? ": #{@name} " : '' spacing = [ headers.to_a.map { |header| header.try(:length) || header.to_s.length }.max, spacing ].max "#<#{self.class}#{name_part}(#{nrows}x#{ncols})>#{$INPUT_RECORD_SEPARATOR}" + Formatters::Table.format( each_row.lazy, row_headers: row_headers, headers: headers, threshold: threshold, spacing: spacing ) end |
#interact_code(vector_names, full) ⇒ Object
499 500 501 502 503 504 505 506 507 |
# File 'lib/daru_lite/dataframe.rb', line 499 def interact_code(vector_names, full) dfs = vector_names.zip(full).map do |vec_name, f| self[vec_name].contrast_code(full: f).each.to_a end all_vectors = recursive_product(dfs) DaruLite::DataFrame.new all_vectors, order: all_vectors.map(&:name) end |
#ncols ⇒ Object
The number of vectors
351 352 353 |
# File 'lib/daru_lite/dataframe.rb', line 351 def ncols @vectors.size end |
#nest(*tree_keys, &block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values. If block provided, is used to provide the values, with parameters row of dataset, current last hash on hierarchy and name of the key to include
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# File 'lib/daru_lite/dataframe.rb', line 316 def nest(*tree_keys, &block) tree_keys = tree_keys[0] if tree_keys[0].is_a? Array each_row.with_object({}) do |row, current| # Create tree *keys, last = tree_keys current = keys.inject(current) { |c, f| c[row[f]] ||= {} } name = row[last] if block current[name] = yield(row, current, name) else current[name] ||= [] current[name].push(row.to_h.delete_if { |key, _value| tree_keys.include? key }) end end end |
#nrows ⇒ Object
The number of rows
346 347 348 |
# File 'lib/daru_lite/dataframe.rb', line 346 def nrows @index.size end |
#rename(new_name) ⇒ Object Also known as: name=
Rename the DataFrame.
421 422 423 424 |
# File 'lib/daru_lite/dataframe.rb', line 421 def rename(new_name) @name = new_name self end |
#rename_vectors(name_map) ⇒ Object
Renames the vectors
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = DaruLite::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors :a => :alpha, :c => :gamma
df.vectors.to_a #=> [:alpha, :b, :gamma]
369 370 371 372 373 374 375 |
# File 'lib/daru_lite/dataframe.rb', line 369 def rename_vectors(name_map) existing_targets = name_map.reject { |k, v| k == v }.values & vectors.to_a delete_vectors(*existing_targets) new_names = vectors.to_a.map { |v| name_map[v] || v } self.vectors = DaruLite::Index.new new_names end |
#rename_vectors!(name_map) ⇒ Object
Renames the vectors and returns itself
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = DaruLite::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors! :a => :alpha, :c => :gamma # df
390 391 392 393 |
# File 'lib/daru_lite/dataframe.rb', line 390 def rename_vectors!(name_map) rename_vectors(name_map) self end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
495 496 497 |
# File 'lib/daru_lite/dataframe.rb', line 495 def respond_to_missing?(name, include_private = false) name.to_s.end_with?('=') || has_vector?(name) || super end |
#row ⇒ Object
Access a row or set/create a row. Refer #[] and #[]= docs for details.
Usage
df.row[:a] # access row named ':a'
df.row[:b] = [1,2,3] # set row ':b' to [1,2,3]
251 252 253 |
# File 'lib/daru_lite/dataframe.rb', line 251 def row DaruLite::Accessors::DataFrameByRow.new(self) end |
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
341 342 343 |
# File 'lib/daru_lite/dataframe.rb', line 341 def shape [nrows, ncols] end |
#to_category(*names) ⇒ DaruLite::DataFrame
Converts the specified non category type vectors to category type vectors
476 477 478 479 |
# File 'lib/daru_lite/dataframe.rb', line 476 def to_category(*names) names.each { |n| self[n] = self[n].to_category } self end |
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
428 429 430 431 432 433 434 435 436 |
# File 'lib/daru_lite/dataframe.rb', line 428 def transpose DaruLite::DataFrame.new( each_vector.map(&:to_a).transpose, index: @vectors, order: @index, dtype: @dtype, name: @name ) end |
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc. are complete. This is provided so that time is not wasted in creating the metadata for the vector each time assignment/deletion of elements is done. Updating data this way is called lazy loading. To set or unset lazy loading, see the .lazy_update= method.
416 417 418 |
# File 'lib/daru_lite/dataframe.rb', line 416 def update @data.each(&:update) if DaruLite.lazy_update end |
#which(&block) ⇒ Object
15 16 17 |
# File 'lib/daru_lite/extensions/which_dsl.rb', line 15 def which(&block) WhichQuery.new(self, &block).exec end |