Class: Daru::DataFrame
- Extended by:
- Gem::Deprecate
- Includes:
- Maths::Arithmetic::DataFrame, Maths::Statistics::DataFrame, Plotting::DataFrame::NyaplotLibrary
- Defined in:
- lib/daru/dataframe.rb,
lib/daru/extensions/rserve.rb
Overview
rubocop:disable Metrics/ClassLength
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
TOREMOVE.
-
#index ⇒ Object
The index of the rows of the DataFrame.
-
#name ⇒ Object
readonly
The name of the DataFrame.
-
#size ⇒ Object
readonly
The number of rows present in the DataFrame.
-
#vectors ⇒ Object
The vectors (columns) index of the DataFrame.
Class Method Summary collapse
- ._load(data) ⇒ Object
-
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors - Rows - Columns - Values.
-
.from_activerecord(relation, *fields) ⇒ Object
Read a dataframe from AR::Relation.
-
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file.
-
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
-
.from_html(path, fields = {}) ⇒ Object
Read the table data from a remote html file.
-
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file.
-
.from_sql(dbh, query) ⇒ Object
Read a database query and returns a Dataset.
-
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
Instance Method Summary collapse
- #==(other) ⇒ Object
-
#[](*names) ⇒ Object
Access row or vector.
-
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row.
- #_dump(_depth) ⇒ Object
-
#access_row_tuples_by_indexs(*indexes) ⇒ Object
returns array of row tuples at given index(s).
- #add_row(row, index = nil) ⇒ Object
- #add_vector(n, vector) ⇒ Object
- #add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
- #add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
-
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?.
-
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
-
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions.
-
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size.
-
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
-
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
-
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
-
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector.
-
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
- #collect_row_with_index(&block) ⇒ Object
-
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
- #collect_vector_with_index(&block) ⇒ Object
-
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
-
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
-
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns.
-
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset.
-
#delete_row(index) ⇒ Object
Delete a row.
-
#delete_vector(vector) ⇒ Object
Delete a vector.
-
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors.
-
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
-
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
-
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame.
-
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
-
#each_row ⇒ Object
Iterate over each row.
- #each_row_with_index ⇒ Object
-
#each_vector(&block) ⇒ Object
(also: #each_column)
Iterate over each vector.
-
#each_vector_with_index ⇒ Object
(also: #each_column_with_index)
Iterate over each vector alongwith the name of the vector.
-
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
-
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
-
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true.
-
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
- #get_vector_anyways(v) ⇒ Object
-
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them.
- #has_missing_data? ⇒ Boolean (also: #flawed?)
-
#has_vector?(vector) ⇒ Boolean
Check if a vector is present.
-
#head(quantity = 10) ⇒ Object
(also: #first)
The first ten elements of the DataFrame.
-
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame.
-
#initialize(source, opts = {}) ⇒ DataFrame
constructor
DataFrame basically consists of an Array of Vector objects.
-
#inspect(spacing = 10, threshold = 15) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby).
- #interact_code(vector_names, full) ⇒ Object
-
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins.
- #keep_row_if ⇒ Object
- #keep_vector_if ⇒ Object
-
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified.
-
#map!(axis = :vector, &block) ⇒ Object
Destructive map.
-
#map_rows(&block) ⇒ Object
Map each row.
- #map_rows! ⇒ Object
- #map_rows_with_index(&block) ⇒ Object
-
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
-
#map_vectors! ⇒ Object
Destructive form of #map_vectors.
-
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
-
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames.
- #method_missing(name, *args, &block) ⇒ Object
-
#missing_values_rows(missing_values = [nil]) ⇒ Object
(also: #vector_missing_values)
Return a vector with the number of missing values in each row.
-
#ncols ⇒ Object
The number of vectors.
-
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values.
-
#nrows ⇒ Object
The number of rows.
- #numeric_vector_names ⇒ Object
-
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors.
-
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
-
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors.
-
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe.
-
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
- #plotting_library=(lib) ⇒ Object
-
#recast(opts = {}) ⇒ Object
Change dtypes of vectors by supplying a hash of :vector_name => :new_dtype.
-
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame.
- #recode_rows ⇒ Object
- #recode_vectors ⇒ Object
-
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing.
- #reindex_vectors(new_vectors) ⇒ Object
-
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values are ignored.
-
#rename(new_name) ⇒ Object
(also: #name=)
Rename the DataFrame.
-
#rename_vectors(name_map) ⇒ Object
Renames the vectors.
-
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value.
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
-
#row ⇒ Object
Access a row or set/create a row.
-
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions.
-
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
-
#set_at(positions, vector) ⇒ Object
Set vectors by positions.
-
#set_index(new_index, opts = {}) ⇒ Object
Set a particular column as the new DF.
-
#set_row_at(positions, vector) ⇒ Object
Set rows by positions.
-
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
-
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!.
-
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
-
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector.
-
#summary ⇒ String
Generate a summary of this DataFrame based on individual vectors in the DataFrame.
-
#tail(quantity = 10) ⇒ Object
(also: #last)
The last ten elements of the DataFrame.
-
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element.
-
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors.
-
#to_df ⇒ self
Returns the dataframe.
-
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix.
-
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
-
#to_html(threshold = 30) ⇒ Object
Convert to html for IRuby.
- #to_html_tbody(threshold = 30) ⇒ Object
- #to_html_thead ⇒ Object
-
#to_json(no_index = true) ⇒ Object
Convert to json.
-
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
-
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
-
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
-
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat.
-
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc.
-
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
- #vector_count_characters(vecs = nil) ⇒ Object
-
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
-
#vector_sum(vecs = nil) ⇒ Object
Returns a vector with sum of all vectors specified in the argument.
-
#verify(*tests) ⇒ Object
Test each row with one or more tests.
-
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
-
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
-
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet.
-
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table.
Methods included from Plotting::DataFrame::NyaplotLibrary
Methods included from Maths::Statistics::DataFrame
#acf, #correlation, #count, #covariance, #cumsum, #describe, #ema, #max, #mean, #median, #min, #mode, #percent_change, #product, #range, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_variance, #standardize, #std, #sum, #variance_sample
Methods included from Maths::Arithmetic::DataFrame
#%, #*, #**, #+, #-, #/, #exp, #round, #sqrt
Constructor Details
#initialize(source, opts = {}) ⇒ DataFrame
DataFrame basically consists of an Array of Vector objects. These objects are indexed by row and column by vectors and index Index objects.
Arguments
-
source - Source from the DataFrame is to be initialized. Can be a Hash
of names and vectors (array or Daru::Vector), an array of arrays or array of Daru::Vectors.
Options
:order
- An Array/Daru::Index/Daru::MultiIndex containing the order in which Vectors should appear in the DataFrame.
:index
- An Array/Daru::Index/Daru::MultiIndex containing the order in which rows of the DataFrame will be named.
:name
- A name for the DataFrame.
:clone
- Specify as true or false. When set to false, and Vector objects are passed for the source, the Vector objects will not duplicated when creating the DataFrame. Will have no effect if Array is passed in the source, or if the passed Daru::Vectors have different indexes. Default to true.
Usage
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: [:a, :b, :c, :d], name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
df = Daru::DataFrame.new([[1,2,3,4],[6,7,8,9]], name: :bat_man)
# =>
# #<Daru::DataFrame: bat_man (4x2)>
# 0 1
# 0 1 6
# 1 2 7
# 2 3 8
# 3 4 9
# Dataframe having Index name
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: Daru::Index.new([:a, :b, :c, :d], name: 'idx_name'),
name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# idx_name b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
idx = Daru::Index.new [100, 99, 101, 1, 2], name: "s1"
=> #<Daru::Index(5): s1 {100, 99, 101, 1, 2}>
df = Daru::DataFrame.new({b: [11,12,13,14,15], a: [1,2,3,4,5],
c: [11,22,33,44,55]},
order: [:a, :b, :c],
index: idx)
# =>
#<Daru::DataFrame(5x3)>
# s1 a b c
# 100 1 11 11
# 99 2 12 22
# 101 3 13 33
# 1 4 14 44
# 2 5 15 55
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# File 'lib/daru/dataframe.rb', line 332 def initialize source, opts={} # rubocop:disable Metrics/MethodLength vectors, index = opts[:order], opts[:index] # FIXME: just keyword arges after Ruby 2.1 @data = [] @name = opts[:name] case source when ->(s) { s.empty? } @vectors = Index.coerce vectors @index = Index.coerce index create_empty_vectors when Array initialize_from_array source, vectors, index, opts when Hash initialize_from_hash source, vectors, index, opts end set_size validate update self.plotting_library = Daru.plotting_library end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 |
# File 'lib/daru/dataframe.rb', line 2054 def method_missing(name, *args, &block) case when name =~ /(.+)\=/ name = name[/(.+)\=/].delete('=') name = name.to_sym unless has_vector?(name) insert_or_modify_vector [name], args[0] when has_vector?(name) self[name] when has_vector?(name.to_s) self[name.to_s] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
TOREMOVE
243 244 245 |
# File 'lib/daru/dataframe.rb', line 243 def data @data end |
#index ⇒ Object
The index of the rows of the DataFrame
246 247 248 |
# File 'lib/daru/dataframe.rb', line 246 def index @index end |
#name ⇒ Object (readonly)
The name of the DataFrame
249 250 251 |
# File 'lib/daru/dataframe.rb', line 249 def name @name end |
#size ⇒ Object (readonly)
The number of rows present in the DataFrame
252 253 254 |
# File 'lib/daru/dataframe.rb', line 252 def size @size end |
#vectors ⇒ Object
The vectors (columns) index of the DataFrame
241 242 243 |
# File 'lib/daru/dataframe.rb', line 241 def vectors @vectors end |
Class Method Details
._load(data) ⇒ Object
1980 1981 1982 1983 1984 1985 1986 |
# File 'lib/daru/dataframe.rb', line 1980 def self._load data h = Marshal.load data Daru::DataFrame.new(h[:data], index: h[:index], order: h[:order], name: h[:name]) end |
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors
-
Rows
-
Columns
-
Values
For example, you have these values
x y v
a a 0
a b 1
b a 1
b b 0
You obtain
id a b
a 0 1
b 1 0
Useful to process outputs from databases
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/daru/dataframe.rb', line 199 def crosstab_by_assignation rows, columns, values raise 'Three vectors should be equal size' if rows.size != columns.size || rows.size!=values.size data = Hash.new { |h, col| h[col] = rows.factors.map { |r| [r, nil] }.to_h } columns.zip(rows, values).each { |c, r, v| data[c][r] = v } # FIXME: in fact, WITHOUT this line you'll obtain more "right" # data: with vectors having "rows" as an index... data = data.map { |c, r| [c, r.values] }.to_h data[:_id] = rows.factors DataFrame.new(data) end |
.from_activerecord(relation, *fields) ⇒ Object
100 101 102 |
# File 'lib/daru/dataframe.rb', line 100 def from_activerecord relation, *fields Daru::IO.from_activerecord relation, *fields end |
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file. Specify an optional block to grab the CSV object and pre-condition it (for example use the ‘convert` or `header_convert` methods).
Arguments
-
path - Local path / Remote URL of the file to load specified as a String.
Options
Accepts the same options as the Daru::DataFrame constructor and CSV.open() and uses those to eventually construct the resulting DataFrame.
Verbose Description
You can specify all the options to the ‘.from_csv` function that you do to the Ruby `CSV.read()` function, since this is what is used internally.
For example, if the columns in your CSV file are separated by something other that commas, you can use the ‘:col_sep` option. If you want to convert numeric values to numbers and not keep them as strings, you can use the `:converters` option and set it to `:numeric`.
The ‘.from_csv` function uses the following defaults for reading CSV files (that are passed into the `CSV.read()` function):
{
:col_sep => ',',
:converters => :numeric
}
47 48 49 |
# File 'lib/daru/dataframe.rb', line 47 def from_csv path, opts={}, &block Daru::IO.from_csv path, opts, &block end |
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
Arguments
-
path - Path of the file to be read.
Options
*:worksheet_id - ID of the worksheet that is to be read.
60 61 62 |
# File 'lib/daru/dataframe.rb', line 60 def from_excel path, opts={}, &block Daru::IO.from_excel path, opts, &block end |
.from_html(path, fields = {}) ⇒ Object
Read the table data from a remote html file. Please note that this module works only for static table elements on a HTML page, and won’t work in cases where the data is being loaded into the HTML table by Javascript.
By default - all <th> tag elements in the first proper row are considered as the order, and all the <th> tag elements in the first column are considered as the index.
Arguments
-
path [String] - URL of the target HTML file.
-
fields [Hash] -
:match
- A String to match and choose a particular table(s) from multiple tables of a HTML page.:order
- An Array which would act as the user-defined order, to override the parsed Daru::DataFrame.:index
- An Array which would act as the user-defined index, to override the parsed Daru::DataFrame.:name
- A String that manually assigns a name to the scraped Daru::DataFrame, for user’s preference.
Returns
An Array of Daru::DataFrames, with each dataframe corresponding to a HTML table on that webpage.
Usage
dfs = Daru::DataFrame.from_html("http://www.moneycontrol.com/", match: "Sun Pharma")
dfs.count
# => 4
dfs.first
#
# => <Daru::DataFrame(5x4)>
# Company Price Change Value (Rs
# 0 Sun Pharma 502.60 -65.05 2,117.87
# 1 Reliance 1356.90 19.60 745.10
# 2 Tech Mahin 379.45 -49.70 650.22
# 3 ITC 315.85 6.75 621.12
# 4 HDFC 1598.85 50.95 553.91
159 160 161 |
# File 'lib/daru/dataframe.rb', line 159 def from_html path, fields={} Daru::IO.from_html path, fields end |
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file. For this method to work, the data should be present in a plain text file in columns. See spec/fixtures/bank2.dat for an example.
Arguments
-
path - Path of the file to be read.
-
fields - Vector names of the resulting database.
Usage
df = Daru::DataFrame.from_plaintext 'spec/fixtures/bank2.dat', [:v1,:v2,:v3,:v4,:v5,:v6]
116 117 118 |
# File 'lib/daru/dataframe.rb', line 116 def from_plaintext path, fields Daru::IO.from_plaintext path, fields end |
.from_sql(dbh, query) ⇒ Object
80 81 82 |
# File 'lib/daru/dataframe.rb', line 80 def from_sql dbh, query Daru::IO.from_sql dbh, query end |
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# File 'lib/daru/dataframe.rb', line 165 def rows source, opts={} raise SizeError, 'All vectors must have same length' \ unless source.all? { |v| v.size == source.first.size } opts[:order] ||= guess_order(source) if ArrayHelper.array_of?(source, Array) || source.empty? DataFrame.new(source.transpose, opts) elsif ArrayHelper.array_of?(source, Vector) from_vector_rows(source, opts) else raise ArgumentError, "Can't create DataFrame from #{source}" end end |
Instance Method Details
#==(other) ⇒ Object
2029 2030 2031 2032 2033 2034 2035 |
# File 'lib/daru/dataframe.rb', line 2029 def == other self.class == other.class && @size == other.size && @index == other.index && @vectors == other.vectors && @vectors.to_a.all? { |v| self[v] == other[v] } end |
#[](*names) ⇒ Object
Access row or vector. Specify name of row/vector followed by axis(:row, :vector). Defaults to :vector. Use of this method is not recommended for accessing rows. Use df.row for accessing row with index ‘:a’.
372 373 374 375 |
# File 'lib/daru/dataframe.rb', line 372 def [](*names) axis = extract_axis(names, :vector) dispatch_to_axis axis, :access, *names end |
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row. Instead of using this method directly, use df.row = [1,2,3] to set/create a row ‘:a’ to [1,2,3], or df.vector = [1,2,3] for vectors.
In case a Daru::Vector is specified after the equality the sign, the indexes of the vector will be matched against the row/vector indexes of the DataFrame before an insertion is performed. Unmatched indexes will be set to nil.
516 517 518 519 520 521 522 |
# File 'lib/daru/dataframe.rb', line 516 def []=(*args) vector = args.pop axis = extract_axis(args) names = args dispatch_to_axis axis, :insert_or_modify, names, vector end |
#_dump(_depth) ⇒ Object
1971 1972 1973 1974 1975 1976 1977 1978 |
# File 'lib/daru/dataframe.rb', line 1971 def _dump(_depth) Marshal.dump( data: @data, index: @index.to_a, order: @vectors.to_a, name: @name ) end |
#access_row_tuples_by_indexs(*indexes) ⇒ Object
returns array of row tuples at given index(s)
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 |
# File 'lib/daru/dataframe.rb', line 2114 def access_row_tuples_by_indexs *indexes positions = @index.pos(*indexes) return populate_row_for(positions) if positions.is_a? Numeric res = [] new_rows = @data.map { |vec| vec[*indexes] } indexes.each do |index| tuples = [] new_rows.map { |row| tuples += [row[index]] } res << tuples end res end |
#add_row(row, index = nil) ⇒ Object
524 525 526 |
# File 'lib/daru/dataframe.rb', line 524 def add_row row, index=nil self.row[index || @size] = row end |
#add_vector(n, vector) ⇒ Object
528 529 530 |
# File 'lib/daru/dataframe.rb', line 528 def add_vector n, vector self[n] = vector end |
#add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1176 1177 1178 1179 1180 |
# File 'lib/daru/dataframe.rb', line 1176 def add_vectors_by_split(name,join='-',sep=Daru::SPLIT_TOKEN) self[name] .split_by_separator(sep) .each { |k,v| self["#{name}#{join}#{k}".to_sym] = v } end |
#add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1777 1778 1779 1780 1781 1782 1783 1784 |
# File 'lib/daru/dataframe.rb', line 1777 def add_vectors_by_split_recode(nm, join='-', sep=Daru::SPLIT_TOKEN) self[nm] .split_by_separator(sep) .each_with_index do |(k, v), i| v.rename "#{nm}:#{k}" self["#{nm}#{join}#{i + 1}".to_sym] = v end end |
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?
1233 1234 1235 1236 1237 1238 1239 1240 1241 |
# File 'lib/daru/dataframe.rb', line 1233 def all? axis=:vector, &block if %i[vector column].include?(axis) @data.all?(&block) elsif axis == :row each_row.all?(&block) else raise ArgumentError, "Unidentified axis #{axis}" end end |
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 |
# File 'lib/daru/dataframe.rb', line 1211 def any? axis=:vector, &block if %i[vector column].include?(axis) @data.any?(&block) elsif axis == :row each_row do |row| return true if yield(row) end false else raise ArgumentError, "Unidentified axis #{axis}" end end |
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# File 'lib/daru/dataframe.rb', line 454 def at *positions if AXES.include? positions.last axis = positions.pop return row_at(*positions) if axis == :row end original_positions = positions positions = coerce_positions(*positions, ncols) validate_positions(*positions, ncols) if positions.is_a? Integer @data[positions].dup else Daru::DataFrame.new positions.map { |pos| @data[pos].dup }, index: @index, order: @vectors.at(*original_positions), name: @name end end |
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size. If n not given, uses original number of rows.
982 983 984 985 986 987 988 989 990 |
# File 'lib/daru/dataframe.rb', line 982 def bootstrap(n=nil) n ||= nrows Daru::DataFrame.new({}, order: @vectors).tap do |df_boot| n.times do df_boot.add_row(row[rand(n)]) end df_boot.update end end |
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
Arguments
vectors_to_clone
- Names of vectors to clone. Optional. Will return a view of the whole data frame otherwise.
568 569 570 571 572 573 574 |
# File 'lib/daru/dataframe.rb', line 568 def clone *vectors_to_clone vectors_to_clone.flatten! if ArrayHelper.array_of?(vectors_to_clone, Array) vectors_to_clone = @vectors.to_a if vectors_to_clone.empty? h = vectors_to_clone.map { |vec| [vec, self[vec]] }.to_h Daru::DataFrame.new(h, clone: false, order: vectors_to_clone, name: @name) end |
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
578 579 580 581 582 583 584 |
# File 'lib/daru/dataframe.rb', line 578 def clone_only_valid if include_values?(*Daru::MISSING_VALUES) reject_values(*Daru::MISSING_VALUES) else clone end end |
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
557 558 559 |
# File 'lib/daru/dataframe.rb', line 557 def clone_structure Daru::DataFrame.new([], order: @vectors.dup, index: @index.dup, name: @name) end |
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector. Specify axis with :vector or :row. Default to :vector.
Description
The #collect iterator works similar to #map, the only difference being that it returns a Daru::Vector comprising of the results of each block run. The resultant Vector has the same index as that of the axis over which collect has iterated. It also accepts the optional axis argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
739 740 741 |
# File 'lib/daru/dataframe.rb', line 739 def collect axis=:vector, &block dispatch_to_axis_pl axis, :collect, &block end |
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
:nocov: FIXME: Even not trying to cover this: I can’t get, how it is expected to work.… – zverok
934 935 936 937 938 939 940 941 942 943 944 945 |
# File 'lib/daru/dataframe.rb', line 934 def collect_matrix return to_enum(:collect_matrix) unless block_given? vecs = vectors.to_a rows = vecs.collect { |row| vecs.collect { |col| yield row,col } } Matrix.rows(rows) end |
#collect_row_with_index(&block) ⇒ Object
908 909 910 911 912 |
# File 'lib/daru/dataframe.rb', line 908 def collect_row_with_index &block return to_enum(:collect_row_with_index) unless block_given? Daru::Vector.new(each_row_with_index.map(&block), index: @index) end |
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
902 903 904 905 906 |
# File 'lib/daru/dataframe.rb', line 902 def collect_rows &block return to_enum(:collect_rows) unless block_given? Daru::Vector.new(each_row.map(&block), index: @index) end |
#collect_vector_with_index(&block) ⇒ Object
922 923 924 925 926 |
# File 'lib/daru/dataframe.rb', line 922 def collect_vector_with_index &block return to_enum(:collect_vector_with_index) unless block_given? Daru::Vector.new(each_vector_with_index.map(&block), index: @vectors) end |
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
916 917 918 919 920 |
# File 'lib/daru/dataframe.rb', line 916 def collect_vectors &block return to_enum(:collect_vectors) unless block_given? Daru::Vector.new(each_vector.map(&block), index: @vectors) end |
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
The calculation will be eval’ed, so you can put any variable or expression valid on ruby.
For example:
a = Daru::Vector.new [1,2]
b = Daru::Vector.new [3,4]
ds = Daru::DataFrame.new({:a => a,:b => b})
ds.compute("a+b")
=> Vector [4,6]
1101 1102 1103 1104 |
# File 'lib/daru/dataframe.rb', line 1101 def compute text, &block return instance_eval(&block) if block_given? instance_eval(text) end |
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns. If columns do not exist in both dataframes, they are filled with nils
1342 1343 1344 1345 1346 1347 1348 1349 1350 |
# File 'lib/daru/dataframe.rb', line 1342 def concat other_df vectors = (@vectors.to_a + other_df.vectors.to_a).uniq data = vectors.map do |v| get_vector_anyways(v).dup.concat(other_df.get_vector_anyways(v)) end Daru::DataFrame.new(data, order: vectors) end |
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset
Arguments
-
table - String specifying name of the table that will created in SQL.
-
charset - Character set. Default is “UTF8”.
1802 1803 1804 1805 1806 1807 1808 1809 1810 |
# File 'lib/daru/dataframe.rb', line 1802 def create_sql(table,charset='UTF8') sql = "CREATE TABLE #{table} (" fields = vectors.to_a.collect do |f| v = self[f] f.to_s + ' ' + v.db_type end sql + fields.join(",\n ")+") CHARACTER SET=#{charset};" end |
#delete_row(index) ⇒ Object
Delete a row
966 967 968 969 970 971 972 973 974 975 976 |
# File 'lib/daru/dataframe.rb', line 966 def delete_row index idx = named_index_for index raise IndexError, "Index #{index} does not exist." unless @index.include? idx @index = Daru::Index.new(@index.to_a - [idx]) each_vector do |vector| vector.delete_at idx end set_size end |
#delete_vector(vector) ⇒ Object
Delete a vector
949 950 951 952 953 954 955 956 |
# File 'lib/daru/dataframe.rb', line 949 def delete_vector vector raise IndexError, "Vector #{vector} does not exist." unless @vectors.include?(vector) @data.delete_at @vectors[vector] @vectors = Daru::Index.new @vectors.to_a - [vector] self end |
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors
959 960 961 962 963 |
# File 'lib/daru/dataframe.rb', line 959 def delete_vectors *vectors Array(vectors).each { |vec| delete_vector vec } self end |
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
Arguments
-
vectors_to_dup
- An Array specifying the names of Vectors to
be duplicated. Will duplicate the entire DataFrame if not specified.
547 548 549 550 551 552 553 554 |
# File 'lib/daru/dataframe.rb', line 547 def dup vectors_to_dup=nil vectors_to_dup = @vectors.to_a unless vectors_to_dup src = vectors_to_dup.map { |vec| @data[@vectors.pos(vec)].dup } new_order = Daru::Index.new(vectors_to_dup) Daru::DataFrame.new src, order: new_order, index: @index.dup, name: @name, clone: true end |
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
588 589 590 591 592 593 594 595 |
# File 'lib/daru/dataframe.rb', line 588 def dup_only_valid vecs=nil rows_with_nil = @data.map { |vec| vec.indexes(*Daru::MISSING_VALUES) } .inject(&:concat) .uniq row_indexes = @index.to_a (vecs.nil? ? self : dup(vecs)).row[*(row_indexes - rows_with_nil)] end |
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame. Specify axis by passing :vector or :row as the argument. Default to :vector.
Description
‘#each` works exactly like Array#each. The default mode for `each` is to iterate over the columns of the DataFrame. To iterate over rows you must pass the axis, i.e `:row` as an argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
720 721 722 |
# File 'lib/daru/dataframe.rb', line 720 def each axis=:vector, &block dispatch_to_axis axis, :each, &block end |
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
654 655 656 657 658 659 660 |
# File 'lib/daru/dataframe.rb', line 654 def each_index &block return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_row ⇒ Object
Iterate over each row
687 688 689 690 691 692 693 694 695 |
# File 'lib/daru/dataframe.rb', line 687 def each_row return to_enum(:each_row) unless block_given? @index.size.times do |pos| yield row_at(pos) end self end |
#each_row_with_index ⇒ Object
697 698 699 700 701 702 703 704 705 |
# File 'lib/daru/dataframe.rb', line 697 def each_row_with_index return to_enum(:each_row_with_index) unless block_given? @index.each do |index| yield access_row(index), index end self end |
#each_vector(&block) ⇒ Object Also known as: each_column
Iterate over each vector
663 664 665 666 667 668 669 |
# File 'lib/daru/dataframe.rb', line 663 def each_vector(&block) return to_enum(:each_vector) unless block_given? @data.each(&block) self end |
#each_vector_with_index ⇒ Object Also known as: each_column_with_index
Iterate over each vector alongwith the name of the vector
674 675 676 677 678 679 680 681 682 |
# File 'lib/daru/dataframe.rb', line 674 def each_vector_with_index return to_enum(:each_vector_with_index) unless block_given? @vectors.each do |vector| yield @data[@vectors[vector]], vector end self end |
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
Description
For filtering out certain rows/vectors based on their values, use the #filter method. By default it iterates over vectors and keeps those vectors for which the block returns true. It accepts an optional axis argument which lets you specify whether you want to iterate over vectors or rows.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
Usage
# Filter vectors
df.filter do |vector|
vector.type == :numeric and vector.median < 50
end
# Filter rows
df.filter(:row) do |row|
row[:a] + row[:d] < 100
end
828 829 830 |
# File 'lib/daru/dataframe.rb', line 828 def filter axis=:vector, &block dispatch_to_axis_pl axis, :filter, &block end |
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
1011 1012 1013 1014 1015 1016 1017 |
# File 'lib/daru/dataframe.rb', line 1011 def filter_rows return to_enum(:filter_rows) unless block_given? keep_rows = @index.map { |index| yield access_row(index) } where keep_rows end |
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true
1005 1006 1007 |
# File 'lib/daru/dataframe.rb', line 1005 def filter_vector vec, &block Daru::Vector.new(each_row.select(&block).map { |row| row[vec] }) end |
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
1021 1022 1023 1024 1025 |
# File 'lib/daru/dataframe.rb', line 1021 def filter_vectors &block return to_enum(:filter_vectors) unless block_given? dup.tap { |df| df.keep_vector_if(&block) } end |
#get_vector_anyways(v) ⇒ Object
1336 1337 1338 |
# File 'lib/daru/dataframe.rb', line 1336 def get_vector_anyways(v) @vectors.include?(v) ? self[v].to_a : [nil] * size end |
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them. Returns a Daru::Core::GroupBy object.See the Daru::Core::GroupBy docs for a detailed list of possible operations.
Arguments
-
vectors - An Array contatining names of vectors to group by.
Usage
df = Daru::DataFrame.new({
a: %w{foo bar foo bar foo bar foo foo},
b: %w{one one two three two two one three},
c: [1 ,2 ,3 ,1 ,3 ,6 ,3 ,8],
d: [11 ,22 ,33 ,44 ,55 ,66 ,77 ,88]
})
df.group_by([:a,:b,:c]).groups
#=> {["bar", "one", 2]=>[1],
# ["bar", "three", 1]=>[3],
# ["bar", "two", 6]=>[5],
# ["foo", "one", 1]=>[0],
# ["foo", "one", 3]=>[6],
# ["foo", "three", 8]=>[7],
# ["foo", "two", 3]=>[2, 4]}
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 |
# File 'lib/daru/dataframe.rb', line 1311 def group_by *vectors vectors.flatten! # FIXME: wouldn't it better to do vectors - @vectors here and # raise one error with all non-existent vector names?.. - zverok, 2016-05-18 vectors.each { |v| raise(ArgumentError, "Vector #{v} does not exist") unless has_vector?(v) } vectors = [@vectors.first] if vectors.empty? Daru::Core::GroupBy.new(self, vectors) end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
1123 1124 1125 |
# File 'lib/daru/dataframe.rb', line 1123 def has_missing_data? @data.any? { |vec| vec.include_values?(*Daru::MISSING_VALUES) } end |
#has_vector?(vector) ⇒ Boolean
Check if a vector is present
1198 1199 1200 |
# File 'lib/daru/dataframe.rb', line 1198 def has_vector? vector @vectors.include? vector end |
#head(quantity = 10) ⇒ Object Also known as: first
The first ten elements of the DataFrame
1246 1247 1248 |
# File 'lib/daru/dataframe.rb', line 1246 def head quantity=10 row.at 0..(quantity-1) end |
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame
1142 1143 1144 |
# File 'lib/daru/dataframe.rb', line 1142 def include_values?(*values) @data.any? { |vec| vec.include_values?(*values) } end |
#inspect(spacing = 10, threshold = 15) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby)
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 |
# File 'lib/daru/dataframe.rb', line 2011 def inspect spacing=10, threshold=15 name_part = @name ? ": #{@name} " : '' "#<#{self.class}#{name_part}(#{nrows}x#{ncols})>\n" + Formatters::Table.format( each_row.lazy, row_headers: row_headers, headers: headers, threshold: threshold, spacing: spacing ) end |
#interact_code(vector_names, full) ⇒ Object
2073 2074 2075 2076 2077 2078 2079 2080 2081 |
# File 'lib/daru/dataframe.rb', line 2073 def interact_code vector_names, full dfs = vector_names.zip(full).map do |vec_name, f| self[vec_name].contrast_code(full: f).each.to_a end all_vectors = recursive_product(dfs) Daru::DataFrame.new all_vectors, order: all_vectors.map(&:name) end |
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins. Currently supports inner, left outer, right outer and full outer joins.
1725 1726 1727 |
# File 'lib/daru/dataframe.rb', line 1725 def join(other_df,opts={}) Daru::Core::Merge.join(self, other_df, opts) end |
#keep_row_if ⇒ Object
992 993 994 995 996 |
# File 'lib/daru/dataframe.rb', line 992 def keep_row_if @index .reject { |idx| yield access_row(idx) } .each { |idx| delete_row idx } end |
#keep_vector_if ⇒ Object
998 999 1000 1001 1002 |
# File 'lib/daru/dataframe.rb', line 998 def keep_vector_if @vectors.each do |vector| delete_vector(vector) unless yield(@data[@vectors[vector]], vector) end end |
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified. Will return an Array of the resulting elements. To map over each row/vector and get a DataFrame, see #recode.
Description
The #map iterator works like Array#map. The value returned by each run of the block is added to an Array and the Array is returned. This method also accepts an axis argument, like #each. The default is :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
759 760 761 |
# File 'lib/daru/dataframe.rb', line 759 def map axis=:vector, &block dispatch_to_axis_pl axis, :map, &block end |
#map!(axis = :vector, &block) ⇒ Object
Destructive map. Modifies the DataFrame. Each run of the block must return a Daru::Vector. You can specify the axis to map over as the argument. Default to :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
771 772 773 774 775 776 777 |
# File 'lib/daru/dataframe.rb', line 771 def map! axis=:vector, &block if %i[vector column].include?(axis) map_vectors!(&block) elsif axis == :row map_rows!(&block) end end |
#map_rows(&block) ⇒ Object
Map each row
878 879 880 881 882 |
# File 'lib/daru/dataframe.rb', line 878 def map_rows &block return to_enum(:map_rows) unless block_given? each_row.map(&block) end |
#map_rows! ⇒ Object
890 891 892 893 894 895 896 897 898 |
# File 'lib/daru/dataframe.rb', line 890 def map_rows! return to_enum(:map_rows!) unless block_given? index.dup.each do |i| row[i] = should_be_vector!(yield(row[i])) end self end |
#map_rows_with_index(&block) ⇒ Object
884 885 886 887 888 |
# File 'lib/daru/dataframe.rb', line 884 def map_rows_with_index &block return to_enum(:map_rows_with_index) unless block_given? each_row_with_index.map(&block) end |
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
853 854 855 856 857 |
# File 'lib/daru/dataframe.rb', line 853 def map_vectors &block return to_enum(:map_vectors) unless block_given? @data.map(&block) end |
#map_vectors! ⇒ Object
Destructive form of #map_vectors
860 861 862 863 864 865 866 867 868 |
# File 'lib/daru/dataframe.rb', line 860 def map_vectors! return to_enum(:map_vectors!) unless block_given? vectors.dup.each do |n| self[n] = should_be_vector!(yield(self[n])) end self end |
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
871 872 873 874 875 |
# File 'lib/daru/dataframe.rb', line 871 def map_vectors_with_index &block return to_enum(:map_vectors_with_index) unless block_given? each_vector_with_index.map(&block) end |
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames. In case of name collision, the vectors names are changed to x_1, x_2 .…
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 |
# File 'lib/daru/dataframe.rb', line 1679 def merge other_df # rubocop:disable Metrics/AbcSize unless nrows == other_df.nrows raise ArgumentError, "Number of rows must be equal in this: #{nrows} and other: #{other_df.nrows}" end new_fields = (@vectors.to_a + other_df.vectors.to_a) new_fields = ArrayHelper.recode_repeated(new_fields) DataFrame.new({}, order: new_fields).tap do |df_new| (0...nrows).each do |i| df_new.add_row row[i].to_a + other_df.row[i].to_a end df_new.update end end |
#missing_values_rows(missing_values = [nil]) ⇒ Object Also known as: vector_missing_values
Return a vector with the number of missing values in each row.
Arguments
-
missing_values
- An Array of the values that should be
treated as ‘missing’. The default missing value is nil.
1112 1113 1114 1115 1116 1117 1118 |
# File 'lib/daru/dataframe.rb', line 1112 def missing_values_rows missing_values=[nil] number_of_missing = each_row.map do |row| row.indexes(*missing_values).size end Daru::Vector.new number_of_missing, index: @index, name: "#{@name}_missing_rows" end |
#ncols ⇒ Object
The number of vectors
1193 1194 1195 |
# File 'lib/daru/dataframe.rb', line 1193 def ncols @vectors.size end |
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values. If block provided, is used to provide the values, with parameters row
of dataset, current
last hash on hierarchy and name
of the key to include
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 |
# File 'lib/daru/dataframe.rb', line 1150 def nest *tree_keys, &_block tree_keys = tree_keys[0] if tree_keys[0].is_a? Array each_row.each_with_object({}) do |row, current| # Create tree *keys, last = tree_keys current = keys.inject(current) { |c, f| c[row[f]] ||= {} } name = row[last] if block_given? current[name] = yield(row, current, name) else current[name] ||= [] current[name].push(row.to_h.delete_if { |key,_value| tree_keys.include? key }) end end end |
#nrows ⇒ Object
The number of rows
1188 1189 1190 |
# File 'lib/daru/dataframe.rb', line 1188 def nrows @index.size end |
#numeric_vector_names ⇒ Object
1486 1487 1488 |
# File 'lib/daru/dataframe.rb', line 1486 def numeric_vector_names @vectors.select { |v| self[v].numeric? } end |
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors. Will include vectors with nils alongwith numbers.
1479 1480 1481 1482 1483 1484 |
# File 'lib/daru/dataframe.rb', line 1479 def numeric_vectors # FIXME: Why _with_index ?.. each_vector_with_index .select { |vec, _i| vec.numeric? } .map(&:last) end |
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
for example, you have a survey for number of children with this structure:
id, name, child_name_1, child_age_1, child_name_2, child_age_2
with
ds.one_to_many([:id], "child_%v_%n"
the field of first parameters will be copied verbatim to new dataset, and fields which responds to second pattern will be added one case for each different %n.
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 |
# File 'lib/daru/dataframe.rb', line 1760 def one_to_many(parent_fields, pattern) vars, numbers = one_to_many_components(pattern) DataFrame.new([], order: [*parent_fields, '_col_id', *vars]).tap do |ds| each_row do |row| verbatim = parent_fields.map { |f| [f, row[f]] }.to_h numbers.each do |n| generated = one_to_many_row row, n, vars, pattern next if generated.values.all?(&:nil?) ds.add_row(verbatim.merge(generated).merge('_col_id' => n)) end end ds.update end end |
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors. If clone: false is specified as option, only a view of the Vectors will be returned. Defaults to clone: true.
1493 1494 1495 1496 1497 1498 1499 |
# File 'lib/daru/dataframe.rb', line 1493 def only_numerics opts={} cln = opts[:clone] == false ? false : true arry = numeric_vectors.map { |v| self[v] } order = Index.new(numeric_vectors) Daru::DataFrame.new(arry, clone: cln, order: order, index: @index) end |
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe
1083 1084 1085 1086 1087 |
# File 'lib/daru/dataframe.rb', line 1083 def order=(order_array) raise ArgumentError, 'Invalid order' unless order_array.sort == vectors.to_a.sort initialize(to_h, order: order_array) end |
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
Options
:index
- Keys to group by on the pivot table row index. Pass vector names contained in an Array.
:vectors
- Keys to group by on the pivot table column index. Pass vector names contained in an Array.
:agg
- Function to aggregate the grouped values. Default to :mean. Can use any of the statistics functions applicable on Vectors that can be found in the Daru::Statistics::Vector module.
:values
- Columns to aggregate. Will consider all numeric columns not specified in :index or :vectors. Optional.
Usage
df = Daru::DataFrame.new({
a: ['foo' , 'foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar'],
b: ['one' , 'one', 'one', 'two', 'two', 'one', 'one', 'two', 'two'],
c: ['small','large','large','small','small','large','small','large','small'],
d: [1,2,2,3,3,4,5,6,7],
e: [2,4,4,6,6,8,10,12,14]
})
df.pivot_table(index: [:a], vectors: [:b], agg: :sum, values: :e)
#=>
# #<Daru::DataFrame:88342020 @name = 08cdaf4e-b154-4186-9084-e76dd191b2c9 @size = 2>
# [:e, :one] [:e, :two]
# [:bar] 18 26
# [:foo] 10 12
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 |
# File 'lib/daru/dataframe.rb', line 1658 def pivot_table opts={} raise ArgumentError, 'Specify grouping index' if Array(opts[:index]).empty? index = opts[:index] vectors = opts[:vectors] || [] aggregate_function = opts[:agg] || :mean values = prepare_pivot_values index, vectors, opts raise IndexError, 'No numeric vectors to aggregate' if values.empty? grouped = group_by(index) return grouped.send(aggregate_function) if vectors.empty? super_hash = make_pivot_hash grouped, vectors, values, aggregate_function pivot_dataframe super_hash end |
#plotting_library=(lib) ⇒ Object
354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# File 'lib/daru/dataframe.rb', line 354 def plotting_library= lib case lib when :gruff, :nyaplot @plotting_library = lib if Daru.send("has_#{lib}?".to_sym) extend Module.const_get( "Daru::Plotting::DataFrame::#{lib.to_s.capitalize}Library" ) end else raise ArguementError, "Plotting library #{lib} not supported. "\ 'Supported libraries are :nyaplot and :gruff' end end |
#recast(opts = {}) ⇒ Object
1993 1994 1995 1996 1997 |
# File 'lib/daru/dataframe.rb', line 1993 def recast opts={} opts.each do |vector_name, dtype| self[vector_name].cast(dtype: dtype) end end |
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame. Each run of the block must return a Daru::Vector object. You can specify the axis to map over. Default to :vector.
Description
Recode works similarly to #map, but an important difference between the two is that recode returns a modified Daru::DataFrame instead of an Array. For this reason, #recode expects that every run of the block to return a Daru::Vector.
Just like map and each, recode also accepts an optional axis argument.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
796 797 798 |
# File 'lib/daru/dataframe.rb', line 796 def recode axis=:vector, &block dispatch_to_axis_pl axis, :recode, &block end |
#recode_rows ⇒ Object
842 843 844 845 846 847 848 849 850 |
# File 'lib/daru/dataframe.rb', line 842 def recode_rows block_given? or return to_enum(:recode_rows) dup.tap do |df| df.each_row_with_index do |r, i| df.row[i] = should_be_vector!(yield(r)) end end end |
#recode_vectors ⇒ Object
832 833 834 835 836 837 838 839 840 |
# File 'lib/daru/dataframe.rb', line 832 def recode_vectors block_given? or return to_enum(:recode_vectors) dup.tap do |df| df.each_vector_with_index do |v, i| df[*i] = should_be_vector!(yield(v)) end end end |
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing. New index can be Daru::Index or any of its subclasses.
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 |
# File 'lib/daru/dataframe.rb', line 1398 def reindex new_index unless new_index.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: @vectors, index: new_index, name: @name) new_index.each_with_object(cl) do |idx, memo| memo.row[idx] = @index.include?(idx) ? row[idx] : [nil]*ncols end end |
#reindex_vectors(new_vectors) ⇒ Object
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 |
# File 'lib/daru/dataframe.rb', line 1324 def reindex_vectors new_vectors unless new_vectors.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: new_vectors, index: @index, name: @name) new_vectors.each_with_object(cl) do |vec, memo| memo[vec] = @vectors.include?(vec) ? self[vec] : [nil]*nrows end end |
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values
are ignored.
614 615 616 617 618 619 620 621 622 623 624 |
# File 'lib/daru/dataframe.rb', line 614 def reject_values(*values) positions = size.times.to_a - @data.flat_map { |vec| vec.positions(*values) } # Handle the case when positions size is 1 and #row_at wouldn't return a df if positions.size == 1 pos = positions.first row_at(pos..pos) else row_at(*positions) end end |
#rename(new_name) ⇒ Object Also known as: name=
Rename the DataFrame.
1918 1919 1920 1921 |
# File 'lib/daru/dataframe.rb', line 1918 def rename new_name @name = new_name self end |
#rename_vectors(name_map) ⇒ Object
Renames the vectors
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = Daru::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors :a => :alpha, :c => :gamma
df.vectors.to_a #=> [:alpha, :b, :gamma]
1469 1470 1471 1472 1473 1474 1475 |
# File 'lib/daru/dataframe.rb', line 1469 def rename_vectors name_map existing_targets = name_map.reject { |k,v| k == v }.values & vectors.to_a delete_vectors(*existing_targets) new_names = vectors.to_a.map { |v| name_map[v] ? name_map[v] : v } self.vectors = Daru::Index.new new_names end |
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value
648 649 650 651 |
# File 'lib/daru/dataframe.rb', line 648 def replace_values old_values, new_value @data.each { |vec| vec.replace_values old_values, new_value } self end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
2069 2070 2071 |
# File 'lib/daru/dataframe.rb', line 2069 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_vector?(name) || super end |
#row ⇒ Object
Access a row or set/create a row. Refer #[] and #[]= docs for details.
Usage
df.row[:a] # access row named ':a'
df.row[:b] = [1,2,3] # set row ':b' to [1,2,3]
537 538 539 |
# File 'lib/daru/dataframe.rb', line 537 def row Daru::Accessors::DataFrameByRow.new(self) end |
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# File 'lib/daru/dataframe.rb', line 390 def row_at *positions original_positions = positions positions = coerce_positions(*positions, nrows) validate_positions(*positions, nrows) if positions.is_a? Integer return Daru::Vector.new @data.map { |vec| vec.at(*positions) }, index: @vectors else new_rows = @data.map { |vec| vec.at(*original_positions) } return Daru::DataFrame.new new_rows, index: @index.at(*original_positions), order: @vectors end end |
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
1967 1968 1969 |
# File 'lib/daru/dataframe.rb', line 1967 def save filename Daru::IO.save self, filename end |
#set_at(positions, vector) ⇒ Object
Set vectors by positions
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# File 'lib/daru/dataframe.rb', line 489 def set_at positions, vector if positions.last == :row positions.pop return set_row_at(positions, vector) end validate_positions(*positions, ncols) vector = if vector.is_a? Daru::Vector vector.reindex @index else Daru::Vector.new vector end raise SizeError, 'Vector length should match index length' if vector.size != @index.size positions.each { |pos| @data[pos] = vector } end |
#set_index(new_index, opts = {}) ⇒ Object
Set a particular column as the new DF
1366 1367 1368 1369 1370 1371 1372 1373 1374 |
# File 'lib/daru/dataframe.rb', line 1366 def set_index new_index, opts={} raise ArgumentError, 'All elements in new index must be unique.' if @size != self[new_index].uniq.size self.index = Daru::Index.new(self[new_index].to_a) delete_vector(new_index) unless opts[:keep] self end |
#set_row_at(positions, vector) ⇒ Object
Set rows by positions
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'lib/daru/dataframe.rb', line 421 def set_row_at positions, vector validate_positions(*positions, nrows) vector = if vector.is_a? Daru::Vector vector.reindex @vectors else Daru::Vector.new vector end raise SizeError, 'Vector length should match row length' if vector.size != @vectors.size @data.each_with_index do |vec, pos| vec.set_at(positions, vector.at(pos)) end @index = @data[0].index set_size end |
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
1183 1184 1185 |
# File 'lib/daru/dataframe.rb', line 1183 def shape [nrows, ncols] end |
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!
1620 1621 1622 |
# File 'lib/daru/dataframe.rb', line 1620 def sort vector_order, opts={} dup.sort! vector_order, opts end |
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 |
# File 'lib/daru/dataframe.rb', line 1596 def sort! vector_order, opts={} raise ArgumentError, 'Required atleast one vector name' if vector_order.empty? # To enable sorting with categorical data, # map categories to integers preserving their order old = convert_categorical_vectors vector_order block = sort_prepare_block vector_order, opts order = @index.size.times.sort(&block) new_index = @index.reorder order # To reverse map mapping of categorical data to integers restore_categorical_vectors old @data.each do |vector| vector.reorder! order end self.index = new_index self end |
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 |
# File 'lib/daru/dataframe.rb', line 2101 def split_by_category cat_name cat_dv = self[cat_name] raise ArguementError, "#{cat_name} is not a category vector" unless cat_dv.category? cat_dv.categories.map do |cat| where(cat_dv.eq cat) .rename(cat) .delete_vector cat_name end end |
#summary ⇒ String
Generate a summary of this DataFrame based on individual vectors in the DataFrame
1503 1504 1505 1506 1507 1508 1509 1510 1511 |
# File 'lib/daru/dataframe.rb', line 1503 def summary summary = "= #{name}" summary << "\n Number of rows: #{nrows}" @vectors.each do |v| summary << "\n Element:[#{v}]\n" summary << self[v].summary(1) end summary end |
#tail(quantity = 10) ⇒ Object Also known as: last
The last ten elements of the DataFrame
1255 1256 1257 1258 |
# File 'lib/daru/dataframe.rb', line 1255 def tail quantity=10 start = [-quantity, -size].max row.at start..-1 end |
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element. The 0th index of the array contains the array of hashes while the 1th index contains the indexes of each row of the dataframe. Each element in the index array corresponds to its row in the array of hashes, which has the same index.
1850 1851 1852 |
# File 'lib/daru/dataframe.rb', line 1850 def to_a [each_row.map(&:to_h), @index.to_a] end |
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors
2049 2050 2051 2052 |
# File 'lib/daru/dataframe.rb', line 2049 def to_category *names names.each { |n| self[n] = self[n].to_category } self end |
#to_df ⇒ self
Returns the dataframe. This can be convenient when the user does not know whether the object is a vector or a dataframe.
1815 1816 1817 |
# File 'lib/daru/dataframe.rb', line 1815 def to_df self end |
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix
1820 1821 1822 1823 1824 |
# File 'lib/daru/dataframe.rb', line 1820 def to_gsl numerics_as_arrays = numeric_vectors.map { |n| self[n].to_a } GSL::Matrix.alloc(*numerics_as_arrays.transpose) end |
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
1866 1867 1868 1869 1870 |
# File 'lib/daru/dataframe.rb', line 1866 def to_h @vectors .each_with_index .map { |vec_name, idx| [vec_name, @data[idx]] }.to_h end |
#to_html(threshold = 30) ⇒ Object
Convert to html for IRuby.
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 |
# File 'lib/daru/dataframe.rb', line 1873 def to_html(threshold=30) table_thead = to_html_thead table_tbody = to_html_tbody(threshold) path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi.html.erb', __FILE__) else File.('../iruby/templates/dataframe.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_html_tbody(threshold = 30) ⇒ Object
1894 1895 1896 1897 1898 1899 1900 1901 1902 |
# File 'lib/daru/dataframe.rb', line 1894 def to_html_tbody(threshold=30) table_tbody_path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi_tbody.html.erb', __FILE__) else File.('../iruby/templates/dataframe_tbody.html.erb', __FILE__) end ERB.new(File.read(table_tbody_path).strip).result(binding) end |
#to_html_thead ⇒ Object
1884 1885 1886 1887 1888 1889 1890 1891 1892 |
# File 'lib/daru/dataframe.rb', line 1884 def to_html_thead table_thead_path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi_thead.html.erb', __FILE__) else File.('../iruby/templates/dataframe_thead.html.erb', __FILE__) end ERB.new(File.read(table_thead_path).strip).result(binding) end |
#to_json(no_index = true) ⇒ Object
Convert to json. If no_index is false then the index will NOT be included in the JSON thus created.
1856 1857 1858 1859 1860 1861 1862 |
# File 'lib/daru/dataframe.rb', line 1856 def to_json no_index=true if no_index to_a[0].to_json else to_a.to_json end end |
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
1827 1828 1829 |
# File 'lib/daru/dataframe.rb', line 1827 def to_matrix Matrix.columns each_vector.select(&:numeric?).map(&:to_a) end |
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
1839 1840 1841 1842 1843 |
# File 'lib/daru/dataframe.rb', line 1839 def to_nmatrix each_vector.select do |vector| vector.numeric? && !vector.include_values?(*Daru::MISSING_VALUES) end.map(&:to_a).transpose.to_nm end |
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame. :nocov:
1833 1834 1835 |
# File 'lib/daru/dataframe.rb', line 1833 def to_nyaplotdf Nyaplot::DataFrame.new(to_a[0]) end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
5 6 7 8 9 10 11 12 13 |
# File 'lib/daru/extensions/rserve.rb', line 5 def to_REXP # rubocop:disable Style/MethodName names = @vectors.to_a data = names.map do |f| Rserve::REXP::Wrapper.wrap(self[f].to_a) end l = Rserve::Rlist.new(data, names.map(&:to_s)) Rserve::REXP.create_data_frame(l) end |
#to_s ⇒ Object
1904 1905 1906 |
# File 'lib/daru/dataframe.rb', line 1904 def to_s "#<#{self.class}#{': ' + @name.to_s if @name}(#{nrows}x#{ncols})>" end |
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
2000 2001 2002 2003 2004 2005 2006 2007 2008 |
# File 'lib/daru/dataframe.rb', line 2000 def transpose Daru::DataFrame.new( each_vector.map(&:to_a).transpose, index: @vectors, order: @index, dtype: @dtype, name: @name ) end |
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat. Additionally it tries to preserve the index. If the indices contain common elements, #union will overwrite the according rows in the first dataframe.
1356 1357 1358 1359 1360 1361 1362 1363 |
# File 'lib/daru/dataframe.rb', line 1356 def union other_df index = (@index.to_a + other_df.index.to_a).uniq df = row[*(@index.to_a - other_df.index.to_a)] df = df.concat(other_df) df.index = Daru::Index.new(index) df end |
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc. are complete. This is provided so that time is not wasted in creating the metadata for the vector each time assignment/deletion of elements is done. Updating data this way is called lazy loading. To set or unset lazy loading, see the .lazy_update= method.
1913 1914 1915 |
# File 'lib/daru/dataframe.rb', line 1913 def update @data.each(&:update) if Daru.lazy_update end |
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
Usage
a1 = Daru::Vector.new([1, 2, 3, 4, 5, 6, 7])
a2 = Daru::Vector.new([10, 20, 30, 40, 50, 60, 70])
a3 = Daru::Vector.new([100, 200, 300, 400, 500, 600, 700])
ds = Daru::DataFrame.new({ :a => a1, :b => a2, :c => a3 })
total = ds.vector_by_calculation { a + b + c }
# <Daru::Vector:82314050 @name = nil @size = 7 >
# nil
# 0 111
# 1 222
# 2 333
# 3 444
# 4 555
# 5 666
# 6 777
1063 1064 1065 1066 1067 |
# File 'lib/daru/dataframe.rb', line 1063 def vector_by_calculation &block a = each_row.map { |r| r.instance_eval(&block) } Daru::Vector.new a, index: @index end |
#vector_count_characters(vecs = nil) ⇒ Object
1168 1169 1170 1171 1172 1173 1174 |
# File 'lib/daru/dataframe.rb', line 1168 def vector_count_characters vecs=nil vecs ||= @vectors.to_a collect_rows do |row| vecs.map { |v| row[v].to_s.size }.inject(:+) end end |
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
Arguments
-
max_missing
- The maximum number of elements in the row that can be
zero for the mean calculation to happen. Default to 0.
1277 1278 1279 1280 1281 1282 1283 1284 1285 |
# File 'lib/daru/dataframe.rb', line 1277 def vector_mean max_missing=0 # FIXME: in vector_sum we preserve created vector dtype, but # here we are not. Is this by design or ...? - zverok, 2016-05-18 mean_vec = Daru::Vector.new [0]*@size, index: @index, name: "mean_#{@name}" each_row_with_index.each_with_object(mean_vec) do |(row, i), memo| memo[i] = row.indexes(*Daru::MISSING_VALUES).size > max_missing ? nil : row.mean end end |
#vector_sum(vecs = nil) ⇒ Object
Returns a vector with sum of all vectors specified in the argument. If vecs parameter is empty, sum all numeric vector.
1264 1265 1266 1267 1268 1269 |
# File 'lib/daru/dataframe.rb', line 1264 def vector_sum vecs=nil vecs ||= numeric_vectors sum = Daru::Vector.new [0]*@size, index: @index, name: @name, dtype: @dtype vecs.inject(sum) { |memo, n| memo + self[n] } end |
#verify(*tests) ⇒ Object
Test each row with one or more tests. Each test is a Proc with the form *Proc.new {|row| row > 0}*
The function returns an array with all errors.
FIXME: description here is too sparse. As far as I can get, it should tell something about that each test is [descr, fields, block], and that first value may be column name to output. - zverok, 2016-05-18
1035 1036 1037 1038 1039 1040 1041 1042 |
# File 'lib/daru/dataframe.rb', line 1035 def verify(*tests) id = tests.first.is_a?(Symbol) ? tests.shift : @vectors.first each_row_with_index.map do |row, i| tests.reject { |*_, block| block.call(row) } .map { |test| row, test, id, i } end.flatten end |
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
2025 2026 2027 |
# File 'lib/daru/dataframe.rb', line 2025 def where bool_array Daru::Core::Query.df_where self, bool_array end |
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
Arguements
-
filename - Path of CSV file where the DataFrame is to be saved.
Options
-
convert_comma - If set to true, will convert any commas in any
of the data to full stops (‘.’). All the options accepted by CSV.read() can also be passed into this function.
1937 1938 1939 |
# File 'lib/daru/dataframe.rb', line 1937 def write_csv filename, opts={} Daru::IO.dataframe_write_csv self, filename, opts end |
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet
Arguments
-
filename - The path of the file where the DataFrame should be written.
1946 1947 1948 |
# File 'lib/daru/dataframe.rb', line 1946 def write_excel filename, opts={} Daru::IO.dataframe_write_excel self, filename, opts end |
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table
Arguments
-
dbh - DBI database connection object.
-
query - Query string.
Usage
ds = Daru::DataFrame.new({:id=>Daru::Vector.new([1,2,3]), :name=>Daru::Vector.new(["a","b","c"])})
dbh = DBI.connect("DBI:Mysql:database:localhost", "user", "password")
ds.write_sql(dbh,"test")
1962 1963 1964 |
# File 'lib/daru/dataframe.rb', line 1962 def write_sql dbh, table Daru::IO.dataframe_write_sql self, dbh, table end |