Class: Daru::Vector

Inherits:
Object show all
Extended by:
Gem::Deprecate
Includes:
Maths::Arithmetic::Vector, Maths::Statistics::Vector, Enumerable
Defined in:
lib/daru/vector.rb,
lib/daru/extensions/rserve.rb

Overview

rubocop:disable Metrics/ClassLength

Constant Summary collapse

DEFAULT_SORTER =
lambda { |(lv, li), (rv, ri)|
  case
  when lv.nil? && rv.nil?
    li <=> ri
  when lv.nil?
    -1
  when rv.nil?
    1
  else
    lv <=> rv
  end
}
DATE_REGEXP =
/^(\d{2}-\d{2}-\d{4}|\d{4}-\d{2}-\d{2})$/

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Maths::Statistics::Vector

#acf, #acvf, #average_deviation_population, #box_cox_transformation, #center, #coefficient_of_variation, #count, #covariance_population, #covariance_sample, #cumsum, #describe, #dichotomize, #diff, #ema, #emsd, #emv, #factors, #freqs, #frequencies, #kurtosis, #macd, #max, #max_index, #mean, #median, #median_absolute_deviation, #min, #mode, #percent_change, #percentile, #product, #proportion, #proportions, #range, #ranked, #rolling, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_sum, #rolling_variance, #sample_with_replacement, #sample_without_replacement, #skew, #standard_deviation_population, #standard_deviation_sample, #standard_error, #standardize, #sum, #sum_of_squared_deviation, #sum_of_squares, #value_counts, #variance_population, #variance_sample, #vector_centered_compute, #vector_percentile, #vector_standardized_compute

Methods included from Maths::Arithmetic::Vector

#%, #*, #**, #+, #-, #/, #abs, #exp, #round, #sqrt

Constructor Details

#initialize(source, opts = {}) ⇒ Vector

Create a Vector object.

Arguments

Hash. If Array, a numeric index will be created if not supplied in the options. Specifying more index elements than actual values in source will insert nil into the surplus index elements. When a Hash is specified, the keys of the Hash are taken as the index elements and the corresponding values as the values that populate the vector.

Options

  • :name - Name of the vector

  • :index - Index of the vector

  • :dtype - The underlying data type. Can be :array, :nmatrix or :gsl.

Default :array.

  • :nm_dtype - For NMatrix, the data type of the numbers. See the NMatrix docs for

further information on supported data type.

  • :missing_values - An Array of the values that are to be treated as 'missing'.

nil is the default missing value.

Usage

vecarr = Daru::Vector.new [1,2,3,4], index: [:a, :e, :i, :o]
vechsh = Daru::Vector.new({a: 1, e: 2, i: 3, o: 4})

Parameters:

  • source (Array, Hash)
    • Supply elements in the form of an Array or a


178
179
180
181
182
183
184
185
186
187
# File 'lib/daru/vector.rb', line 178

def initialize source, opts={}
  if opts[:type] == :category
    # Initialize category type vector
    extend Daru::Category
    initialize_category source, opts
  else
    # Initialize non-category type vector
    initialize_vector source, opts
  end
end

Dynamic Method Handling

This class handles dynamic methods through the method_missing method

#method_missing(name, *args, &block) ⇒ Object


1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
# File 'lib/daru/vector.rb', line 1265

def method_missing(name, *args, &block)
  # FIXME: it is shamefully fragile. Should be either made stronger
  # (string/symbol dychotomy, informative errors) or removed totally. - zverok
  if name =~ /(.+)\=/
    self[$1.to_sym] = args[0]
  elsif has_index?(name)
    self[name]
  else
    super
  end
end

Instance Attribute Details

#dataObject (readonly)

Store vector data in an array


142
143
144
# File 'lib/daru/vector.rb', line 142

def data
  @data
end

#dtypeObject (readonly)

The underlying dtype of the Vector. Can be either :array, :nmatrix or :gsl.


130
131
132
# File 'lib/daru/vector.rb', line 130

def dtype
  @dtype
end

#indexObject

The row index. Can be either Daru::Index or Daru::MultiIndex.


128
129
130
# File 'lib/daru/vector.rb', line 128

def index
  @index
end

#labelsObject

Store a hash of labels for values. Supplementary only. Recommend using index for proper usage.


140
141
142
# File 'lib/daru/vector.rb', line 140

def labels
  @labels
end

#missing_positionsObject (readonly)

An Array or the positions in the vector that are being treated as 'missing'.


136
137
138
# File 'lib/daru/vector.rb', line 136

def missing_positions
  @missing_positions
end

#nameObject (readonly)

The name of the Daru::Vector. String.


126
127
128
# File 'lib/daru/vector.rb', line 126

def name
  @name
end

#nm_dtypeObject (readonly)

If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object. See NMatrix docs for more details on NMatrix data types.


134
135
136
# File 'lib/daru/vector.rb', line 134

def nm_dtype
  @nm_dtype
end

#plotting_libraryObject

Ploting library being used for this vector


144
145
146
# File 'lib/daru/vector.rb', line 144

def plotting_library
  @plotting_library
end

Class Method Details

.[](*indexes) ⇒ Object

Create a vector using (almost) any object

  • Array: flattened

  • Range: transformed using to_a

  • Daru::Vector

  • Numeric and string values

Description

The `Vector.[]` class method creates a vector from almost any object that has a `#to_a` method defined on it. It is similar to R's `c` method.

Usage

a = Daru::Vector[1,2,3,4,6..10]
#=>
# <Daru::Vector:99448510 @name = nil @size = 9 >
#   nil
# 0   1
# 1   2
# 2   3
# 3   4
# 4   6
# 5   7
# 6   8
# 7   9
# 8  10

66
67
68
69
70
71
# File 'lib/daru/vector.rb', line 66

def [](*indexes)
  values = indexes.map do |a|
    a.respond_to?(:to_a) ? a.to_a : a
  end.flatten
  Daru::Vector.new(values)
end

._load(data) ⇒ Object

:nodoc:


73
74
75
76
77
78
79
# File 'lib/daru/vector.rb', line 73

def _load(data) # :nodoc:
  h = Marshal.load(data)
  Daru::Vector.new(h[:data],
    index: h[:index],
    name: h[:name],
    dtype: h[:dtype], missing_values: h[:missing_values])
end

.coerce(data, options = {}) ⇒ Object


81
82
83
84
85
86
87
88
89
90
# File 'lib/daru/vector.rb', line 81

def coerce(data, options={})
  case data
  when Daru::Vector
    data
  when Array, Hash
    new(data, options)
  else
    raise ArgumentError, "Can't coerce #{data.class} to #{self}"
  end
end

.new_with_size(n, opts = {}, &block) ⇒ Object

Create a new vector by specifying the size and an optional value and block to generate values.

Description

The new_with_size class method lets you create a Daru::Vector by specifying the size as the argument. The optional block, if supplied, is run once for populating each element in the Vector.

The result of each run of the block is the value that is ultimately assigned to that position in the Vector.

Options

:value All the rest like .new


33
34
35
36
37
# File 'lib/daru/vector.rb', line 33

def new_with_size n, opts={}, &block
  value = opts.delete :value
  block ||= ->(_) { value }
  Daru::Vector.new Array.new(n, &block), opts
end

Instance Method Details

#==(other) ⇒ Object

Two vectors are equal if the have the exact same index values corresponding with the exact same elements. Name is ignored.


296
297
298
299
300
301
302
303
304
# File 'lib/daru/vector.rb', line 296

def == other
  case other
  when Daru::Vector
    @index == other.index && size == other.size &&
      @index.all? { |index| self[index] == other[index] }
  else
    super
  end
end

#[](*input_indexes) ⇒ Object

Get one or more elements with specified index or a range.

Usage

# For vectors employing single layer Index

v[:one, :two] # => Daru::Vector with indexes :one and :two
v[:one]       # => Single element
v[:one..:three] # => Daru::Vector with indexes :one, :two and :three

# For vectors employing hierarchial multi index

213
214
215
216
217
218
219
220
221
222
223
224
225
226
# File 'lib/daru/vector.rb', line 213

def [](*input_indexes)
  # Get array of positions indexes
  positions = @index.pos(*input_indexes)

  # If one object is asked return it
  return @data[positions] if positions.is_a? Numeric

  # Form a new Vector using positional indexes
  Daru::Vector.new(
    positions.map { |loc| @data[loc] },
    name: @name,
    index: @index.subset(*input_indexes), dtype: @dtype
  )
end

#[]=(*indexes, val) ⇒ Object

Just like in Hashes, you can specify the index label of the Daru::Vector and assign an element an that place in the Daru::Vector.

Usage

v = Daru::Vector.new([1,2,3], index: [:a, :b, :c])
v[:a] = 999
#=>
##<Daru::Vector:90257920 @name = nil @size = 3 >
#    nil
#  a 999
#  b   2
#  c   3

284
285
286
287
288
289
290
291
292
# File 'lib/daru/vector.rb', line 284

def []=(*indexes, val)
  cast(dtype: :array) if val.nil? && dtype != :array

  guard_type_check(val)

  modify_vector(indexes, val)

  update_position_cache
end

#_dumpObject

:nodoc:


1235
1236
1237
1238
1239
1240
1241
1242
# File 'lib/daru/vector.rb', line 1235

def _dump(*) # :nodoc:
  Marshal.dump(
    data:           @data.to_a,
    dtype:          @dtype,
    name:           @name,
    index:          @index
  )
end

#all?(&block) ⇒ Boolean

Returns:

  • (Boolean)

552
553
554
# File 'lib/daru/vector.rb', line 552

def all? &block
  @data.data.all?(&block)
end

#any?(&block) ⇒ Boolean

Returns:

  • (Boolean)

548
549
550
# File 'lib/daru/vector.rb', line 548

def any? &block
  @data.data.any?(&block)
end

#at(*positions) ⇒ object

Returns vector of values given positional values

Examples:

dv = Daru::Vector.new 'a'..'e'
dv.at 0, 1, 2
# => #<Daru::Vector(3)>
#   0   a
#   1   b
#   2   c

Parameters:

  • *positions (Array<object>)

    positional values

Returns:

  • (object)

    vector


238
239
240
241
242
243
244
245
246
247
248
249
250
# File 'lib/daru/vector.rb', line 238

def at *positions
  # to be used to form index
  original_positions = positions
  positions = coerce_positions(*positions)
  validate_positions(*positions)

  if positions.is_a? Integer
    @data[positions]
  else
    values = positions.map { |pos| @data[pos] }
    Daru::Vector.new values, index: @index.at(*original_positions), dtype: dtype
  end
end

#bootstrap(estimators, nr, s = nil) ⇒ Object

Bootstrap

Generate nr resamples (with replacement) of size s from vector, computing each estimate from estimators over each resample. estimators could be a) Hash with variable names as keys and lambdas as values

a.bootstrap(:log_s2=>lambda {|v| Math.log(v.variance)},1000)

b) Array with names of method to bootstrap

a.bootstrap([:mean, :sd],1000)

c) A single method to bootstrap

a.jacknife(:mean, 1000)

If s is nil, is set to vector size by default.

Returns a DataFrame where each vector is a vector of length nr containing the computed resample estimates.


1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
# File 'lib/daru/vector.rb', line 1034

def bootstrap(estimators, nr, s=nil)
  s ||= size
  h_est, es, bss = prepare_bootstrap(estimators)

  nr.times do
    bs = sample_with_replacement(s)
    es.each do |estimator|
      bss[estimator].push(h_est[estimator].call(bs))
    end
  end

  es.each do |est|
    bss[est] = Daru::Vector.new bss[est]
  end

  Daru::DataFrame.new bss
end

#cast(opts = {}) ⇒ Object

Cast a vector to a new data type.

Options

  • :dtype - :array for Ruby Array. :nmatrix for NMatrix.

Raises:

  • (ArgumentError)

479
480
481
482
483
484
485
# File 'lib/daru/vector.rb', line 479

def cast opts={}
  dt = opts[:dtype]
  raise ArgumentError, "Unsupported dtype #{opts[:dtype]}" unless
    dt == :array || dt == :nmatrix || dt == :gsl

  @data = cast_vector_to dt unless @dtype == dt
end

#category?true, false

Tells if vector is categorical or not.

Examples:

dv = Daru::Vector.new [1, 2, 3], type: :category
dv.category?
# => true

Returns:

  • (true, false)

    true if vector is of type category, false otherwise


528
529
530
# File 'lib/daru/vector.rb', line 528

def category?
  type == :category
end

#clone_structureObject

Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.


1222
1223
1224
# File 'lib/daru/vector.rb', line 1222

def clone_structure
  Daru::Vector.new(([nil]*size), name: @name, index: @index.dup)
end

#concat(element, index) ⇒ Object Also known as: push, <<

Append an element to the vector by specifying the element and index

Raises:

  • (IndexError)

463
464
465
466
467
468
469
470
# File 'lib/daru/vector.rb', line 463

def concat element, index
  raise IndexError, 'Expected new unique index' if @index.include? index

  @index |= [index]
  @data[@index[index]] = element

  update_position_cache
end

#count_values(*values) ⇒ Integer

Count the number of values specified

Examples:

dv = Daru::Vector.new [1, 2, 1, 2, 3, 4, nil, nil]
dv.count_values nil
# => 2

Parameters:

  • *values (Array)

    values to count for

Returns:

  • (Integer)

    the number of times the values mentioned occurs


798
799
800
# File 'lib/daru/vector.rb', line 798

def count_values(*values)
  positions(*values).size
end

#cut(partitions, opts = {}) ⇒ Daru::Vector

Partition a numeric variable into categories.

Examples:

heights = Daru::Vector.new [30, 35, 32, 50, 42, 51]
height_cat = heights.cut [30, 40, 50, 60], labels=['low', 'medium', 'high']
# => #<Daru::Vector(6)>
#       0    low
#       1    low
#       2    low
#       3   high
#       4 medium
#       5   high

Parameters:

  • partitions (Array<Numeric>)

    an array whose consecutive elements provide intervals for categories

  • opts (Hash) (defaults to: {})

    options to cut the partition

Options Hash (opts):

  • :close_at (:left, :right)

    specifies whether the interval closes at the right side of left side

  • :labels (Array)

    names of the categories

Returns:

  • (Daru::Vector)

    numeric variable converted to categorical variable


1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
# File 'lib/daru/vector.rb', line 1299

def cut partitions, opts={}
  close_at, labels = opts[:close_at] || :right, opts[:labels]
  partitions = partitions.to_a
  values = to_a.map { |val| cut_find_category partitions, val, close_at }
  cats = cut_categories(partitions, close_at)

  dv = Daru::Vector.new values,
    index: @index,
    type: :category,
    categories: cats

  # Rename categories if new labels provided
  if labels
    dv.rename_categories Hash[cats.zip(labels)]
  else
    dv
  end
end

#daru_vectorObject Also known as: dv

:nocov:


1245
1246
1247
# File 'lib/daru/vector.rb', line 1245

def daru_vector(*)
  self
end

#db_typeObject

Returns the database type for the vector, according to its content


1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
# File 'lib/daru/vector.rb', line 1206

def db_type
  # first, detect any character not number
  case
  when @data.any? { |v| v.to_s =~ DATE_REGEXP }
    'DATE'
  when @data.any? { |v| v.to_s =~ /[^0-9e.-]/ }
    'VARCHAR (255)'
  when @data.any? { |v| v.to_s =~ /\./ }
    'DOUBLE'
  else
    'INTEGER'
  end
end

#delete(element) ⇒ Object

Delete an element by value


488
489
490
# File 'lib/daru/vector.rb', line 488

def delete element
  delete_at index_of(element)
end

#delete_at(index) ⇒ Object

Delete element by index


493
494
495
496
497
498
# File 'lib/daru/vector.rb', line 493

def delete_at index
  @data.delete_at @index[index]
  @index = Daru::Index.new(@index.to_a - [index])

  update_position_cache
end

#delete_ifObject

Delete an element if block returns true. Destructive.


630
631
632
633
634
635
636
637
638
639
640
641
# File 'lib/daru/vector.rb', line 630

def delete_if
  return to_enum(:delete_if) unless block_given?

  keep_e, keep_i = each_with_index.select { |n, _i| !yield(n) }.transpose

  @data = cast_vector_to @dtype, keep_e
  @index = Daru::Index.new(keep_i)

  update_position_cache

  self
end

#detach_indexObject


773
774
775
776
777
778
# File 'lib/daru/vector.rb', line 773

def detach_index
  Daru::DataFrame.new(
    index: @index.to_a,
    values: @data.to_a
  )
end

#dupDaru::Vector

Duplicated a vector

Returns:


1015
1016
1017
# File 'lib/daru/vector.rb', line 1015

def dup
  Daru::Vector.new @data.dup, name: @name, index: @index.dup
end

#each(&block) ⇒ Object


97
98
99
100
101
102
# File 'lib/daru/vector.rb', line 97

def each(&block)
  return to_enum(:each) unless block_given?

  @data.each(&block)
  self
end

#each_index(&block) ⇒ Object


104
105
106
107
108
109
# File 'lib/daru/vector.rb', line 104

def each_index(&block)
  return to_enum(:each_index) unless block_given?

  @index.each(&block)
  self
end

#each_with_index(&block) ⇒ Object


111
112
113
114
115
116
117
# File 'lib/daru/vector.rb', line 111

def each_with_index &block
  return to_enum(:each_with_index) unless block_given?

  @data.to_a.zip(@index.to_a).each(&block)

  self
end

#empty?Boolean

Returns:

  • (Boolean)

430
431
432
# File 'lib/daru/vector.rb', line 430

def empty?
  @index.empty?
end

#has_index?(index) ⇒ Boolean

Returns true if an index exists

Returns:

  • (Boolean)

803
804
805
# File 'lib/daru/vector.rb', line 803

def has_index? index
  @index.include? index
end

#has_missing_data?Boolean Also known as: flawed?

Reports whether missing data is present in the Vector.

Returns:

  • (Boolean)

443
444
445
# File 'lib/daru/vector.rb', line 443

def has_missing_data?
  !indexes(*Daru::MISSING_VALUES).empty?
end

#head(q = 10) ⇒ Object


421
422
423
# File 'lib/daru/vector.rb', line 421

def head q=10
  self[0..(q-1)]
end

#in(other) ⇒ Object

Comparator for checking if any of the elements in other exist in self.

Examples:

Usage of `in`.

vector = Daru::Vector.new([1,2,3,4,5])
vector.where(vector.in([3,5]))
#=>
##<Daru::Vector:82215960 @name = nil @size = 2 >
#    nil
#  2   3
#  4   5

Parameters:

  • other (Array, Daru::Vector)

    A collection which has elements that need to be checked for in self.


372
373
374
375
376
377
378
379
# File 'lib/daru/vector.rb', line 372

def in other
  other = Hash[other.zip(Array.new(other.size, 0))]
  Daru::Core::Query::BoolArray.new(
    @data.each_with_object([]) do |d, memo|
      memo << (other.key?(d) ? true : false)
    end
  )
end

#include_values?(*values) ⇒ true, false

Check if any one of mentioned values occur in the vector

Examples:

dv = Daru::Vector.new [1, 2, 3, 4, nil]
dv.include_values? nil, Float::NAN
# => true

Parameters:

  • *values (Array)

    values to check for

Returns:

  • (true, false)

    returns true if any one of specified values occur in the vector


458
459
460
# File 'lib/daru/vector.rb', line 458

def include_values?(*values)
  values.any? { |v| include_with_nan? @data, v }
end

#index_of(element) ⇒ Object

Get index of element


533
534
535
536
537
538
# File 'lib/daru/vector.rb', line 533

def index_of element
  case dtype
  when :array then @index.key @data.index { |x| x.eql? element }
  else @index.key @data.index(element)
  end
end

#indexes(*values) ⇒ Array

Return indexes of values specified

Examples:

dv = Daru::Vector.new [1, 2, nil, Float::NAN], index: 11..14
dv.indexes nil, Float::NAN
# => [13, 14]

Parameters:

  • *values (Array)

    values to find indexes for

Returns:

  • (Array)

    array of indexes of values specified


1153
1154
1155
# File 'lib/daru/vector.rb', line 1153

def indexes(*values)
  index.to_a.values_at(*positions(*values))
end

#inspect(spacing = 20, threshold = 15) ⇒ Object

Over rides original inspect for pretty printing in irb


928
929
930
931
932
933
934
935
936
937
938
939
# File 'lib/daru/vector.rb', line 928

def inspect spacing=20, threshold=15
  row_headers = index.is_a?(MultiIndex) ? index.sparse_tuples : index.to_a

  "#<#{self.class}(#{size})#{':cataegory' if category?}>\n" +
    Formatters::Table.format(
      to_a.lazy.map { |v| [v] },
      headers: @name && [@name],
      row_headers: row_headers,
      threshold: threshold,
      spacing: spacing
    )
end

#is_nil?Boolean

Returns a vector which has true in the position where the element in self is nil, and false otherwise.

Usage

v = Daru::Vector.new([1,2,4,nil])
v.is_nil?
# =>
#<Daru::Vector:89421000 @name = nil @size = 4 >
#      nil
#  0  false
#  1  false
#  2  false
#  3  true

Returns:

  • (Boolean)

726
727
728
729
# File 'lib/daru/vector.rb', line 726

def is_nil?
  # FIXME: EXTREMELY bad name for method not returning boolean - zverok, 2016-05-18
  recode(&:nil?)
end

#jackknife(estimators, k = 1) ⇒ Object

Jacknife

Returns a dataset with jacknife delete-k estimators estimators could be: a) Hash with variable names as keys and lambdas as values

a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)})

b) Array with method names to jacknife

a.jacknife([:mean, :sd])

c) A single method to jacknife

a.jacknife(:mean)

k represent the block size for block jacknife. By default is set to 1, for classic delete-one jacknife.

Returns a dataset where each vector is an vector of length cases/k containing the computed jacknife estimates.

Reference:

  • Sawyer, S. (2005). Resampling Data: Using a Statistical Jacknife.


1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
# File 'lib/daru/vector.rb', line 1069

def jackknife(estimators, k=1) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength
  raise "n should be divisible by k:#{k}" unless (size % k).zero?

  nb = (size / k).to_i
  h_est, es, ps = prepare_bootstrap(estimators)

  est_n = es.map { |v| [v, h_est[v].call(self)] }.to_h

  nb.times do |i|
    other = @data.dup
    other.slice!(i*k, k)
    other = Daru::Vector.new other

    es.each do |estimator|
      # Add pseudovalue
      ps[estimator].push(
        nb * est_n[estimator] - (nb-1) * h_est[estimator].call(other)
      )
    end
  end

  es.each do |est|
    ps[est] = Daru::Vector.new ps[est]
  end
  Daru::DataFrame.new ps
end

#keep_ifObject

Keep an element if block returns true. Destructive.


644
645
646
647
648
# File 'lib/daru/vector.rb', line 644

def keep_if
  return to_enum(:keep_if) unless block_given?

  delete_if { |val| !yield(val) }
end

#lag(k = 1) ⇒ Object

Lags the series by k periods.

The convention is to set the oldest observations (the first ones in the series) to nil so that the size of the lagged series is the same as the original.

Usage:

ts = Daru::Vector.new((1..10).map { rand })
        # => [0.69, 0.23, 0.44, 0.71, ...]

ts.lag   # => [nil, 0.69, 0.23, 0.44, ...]
ts.lag(2) # => [nil, nil, 0.69, 0.23, ...]

763
764
765
766
767
768
769
770
771
# File 'lib/daru/vector.rb', line 763

def lag k=1
  return dup if k.zero?

  dat = @data.to_a.dup
  (dat.size - 1).downto(k) { |i| dat[i] = dat[i - k] }
  (0...k).each { |i| dat[i] = nil }

  Daru::Vector.new(dat, index: @index, name: @name)
end

#map!(&block) ⇒ Object


119
120
121
122
123
# File 'lib/daru/vector.rb', line 119

def map!(&block)
  return to_enum(:map!) unless block_given?
  @data.map!(&block)
  self
end

#n_validObject

number of non-missing elements


786
787
788
# File 'lib/daru/vector.rb', line 786

def n_valid
  size - indexes(*Daru::MISSING_VALUES).size
end

#not_nil?Boolean

Opposite of #is_nil?

Returns:

  • (Boolean)

732
733
734
# File 'lib/daru/vector.rb', line 732

def not_nil?
  recode { |v| !v.nil? }
end

#numeric?Boolean

Returns:

  • (Boolean)

434
435
436
# File 'lib/daru/vector.rb', line 434

def numeric?
  type == :numeric
end

#object?Boolean

Returns:

  • (Boolean)

438
439
440
# File 'lib/daru/vector.rb', line 438

def object?
  type == :object
end

#only_missing(as_a = :vector) ⇒ Object

Returns a Vector containing only missing data (preserves indexes).


1183
1184
1185
1186
1187
1188
1189
# File 'lib/daru/vector.rb', line 1183

def only_missing as_a=:vector
  if as_a == :vector
    self[*indexes(*Daru::MISSING_VALUES)]
  elsif as_a == :array
    self[*indexes(*Daru::MISSING_VALUES)].to_a
  end
end

#only_numericsObject

Returns a Vector with only numerical data. Missing data is included but non-Numeric objects are excluded. Preserves index.


1194
1195
1196
1197
1198
1199
1200
1201
# File 'lib/daru/vector.rb', line 1194

def only_numerics
  numeric_indexes =
    each_with_index
    .select { |v, _i| v.is_a?(Numeric) || v.nil? }
    .map(&:last)

  self[*numeric_indexes]
end

#only_valid(as_a = :vector, _duplicate = true) ⇒ Object

Creates a new vector consisting only of non-nil data

Arguments

as an Array. Otherwise will return a Daru::Vector.

vector, setting this to false will return the same vector. Otherwise, a duplicate will be returned irrespective of presence of missing data.


1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
# File 'lib/daru/vector.rb', line 1108

def only_valid as_a=:vector, _duplicate=true
  # FIXME: Now duplicate is just ignored.
  #   There are no spec that fail on this case, so I'll leave it
  #   this way for now - zverok, 2016-05-07

  new_index = @index.to_a - indexes(*Daru::MISSING_VALUES)
  new_vector = new_index.map { |idx| self[idx] }

  if as_a == :vector
    Daru::Vector.new new_vector, index: new_index, name: @name, dtype: dtype
  else
    new_vector
  end
end

#positions(*values) ⇒ Object


1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
# File 'lib/daru/vector.rb', line 1318

def positions(*values)
  case values
  when [nil]
    nil_positions
  when [Float::NAN]
    nan_positions
  when [nil, Float::NAN], [Float::NAN, nil]
    nil_positions + nan_positions
  else
    size.times.select { |i| include_with_nan? values, @data[i] }
  end
end

#recode(dt = nil, &block) ⇒ Object

Like map, but returns a Daru::Vector with the returned values.


614
615
616
617
618
# File 'lib/daru/vector.rb', line 614

def recode dt=nil, &block
  return to_enum(:recode) unless block_given?

  dup.recode! dt, &block
end

#recode!(dt = nil, &block) ⇒ Object

Destructive version of recode!


621
622
623
624
625
626
627
# File 'lib/daru/vector.rb', line 621

def recode! dt=nil, &block
  return to_enum(:recode!) unless block_given?

  @data.map!(&block).data
  @data = cast_vector_to(dt || @dtype)
  self
end

#reindex(new_index) ⇒ Object

Create a new vector with a different index, and preserve the indexing of current elements.


988
989
990
# File 'lib/daru/vector.rb', line 988

def reindex new_index
  dup.reindex!(new_index)
end

#reindex!(new_index) ⇒ Daru::Vector

Note:

Unlike #reorder! which takes positions as input it takes index as an input to reorder the vector

Sets new index for vector. Preserves index->value correspondence. Sets nil for new index keys absent from original index.

Parameters:

Returns:


947
948
949
950
951
952
953
954
955
956
957
958
959
960
# File 'lib/daru/vector.rb', line 947

def reindex! new_index
  values = []
  each_with_index do |val, i|
    values[new_index[i]] = val if new_index.include?(i)
  end
  values.fill(nil, values.size, new_index.size - values.size)

  @data = cast_vector_to @dtype, values
  @index = new_index

  update_position_cache

  self
end

#reject_values(*values) ⇒ Daru::Vector

Return a vector with specified values removed

Examples:

dv = Daru::Vector.new [1, 2, nil, Float::NAN]
dv.reject_values nil, Float::NAN
# => #<Daru::Vector(2)>
#   0   1
#   1   2

Parameters:

  • *values (Array)

    values to reject from resultant vector

Returns:


1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
# File 'lib/daru/vector.rb', line 1133

def reject_values(*values)
  resultant_pos = size.times.to_a - positions(*values)
  dv = at(*resultant_pos)
  # Handle the case when number of positions is 1
  # and hence #at doesn't return a vector
  if dv.is_a?(Daru::Vector)
    dv
  else
    pos = resultant_pos.first
    at(pos..pos)
  end
end

#rename(new_name) ⇒ Object Also known as: name=

Give the vector a new name

Parameters:

  • new_name (Symbol)

    The new name.


1006
1007
1008
1009
# File 'lib/daru/vector.rb', line 1006

def rename new_name
  @name = new_name
  self
end

#reorder(order) ⇒ Object

Non-destructive version of #reorder!


982
983
984
# File 'lib/daru/vector.rb', line 982

def reorder order
  dup.reorder! order
end

#reorder!(order) ⇒ Object

Note:

Unlike #reindex! which takes index as input, it takes positions as an input to reorder the vector

Reorder the vector with given positions

Examples:

dv = Daru::Vector.new [3, 2, 1], index: ['c', 'b', 'a']
dv.reorder! [2, 1, 0]
# => #<Daru::Vector(3)>
#   a   1
#   b   2
#   c   3

Parameters:

  • order (Array)

    the order to reorder the vector with

Returns:

  • reordered vector


974
975
976
977
978
979
# File 'lib/daru/vector.rb', line 974

def reorder! order
  @index = @index.reorder order
  @data = order.map { |i| @data[i] }
  update_position_cache
  self
end

#replace_nils(replacement) ⇒ Object

Non-destructive version of #replace_nils!


781
782
783
# File 'lib/daru/vector.rb', line 781

def replace_nils replacement
  dup.replace_nils!(replacement)
end

#replace_nils!(replacement) ⇒ Object

Replace all nils in the vector with the value passed as an argument. Destructive. See #replace_nils for non-destructive version

Arguments

  • replacement - The value which should replace all nils


742
743
744
745
746
747
748
# File 'lib/daru/vector.rb', line 742

def replace_nils! replacement
  indexes(*Daru::MISSING_VALUES).each do |idx|
    self[idx] = replacement
  end

  self
end

#replace_values(old_values, new_value) ⇒ Daru::Vector

Note:

It performs the replace in place.

Replaces specified values with a new value

Examples:

dv = Daru::Vector.new [1, 2, :a, :b]
dv.replace_values [:a, :b], nil
dv
# =>
# #<Daru::Vector:19903200 @name = nil @metadata = {} @size = 4 >
#     nil
#   0   1
#   1   2
#   2 nil
#   3 nil

Parameters:

  • old_values (Array)

    array of values to replace

  • new_value (object)

    new value to replace with

Returns:

  • (Daru::Vector)

    Same vector itself with values replaced with new value


1174
1175
1176
1177
1178
1179
1180
# File 'lib/daru/vector.rb', line 1174

def replace_values(old_values, new_value)
  old_values = [old_values] unless old_values.is_a? Array
  size.times do |pos|
    set_at([pos], new_value) if include_with_nan? old_values, at(pos)
  end
  self
end

#report_building(b) ⇒ Object

:nocov:


897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
# File 'lib/daru/vector.rb', line 897

def report_building b # rubocop:disable Metrics/AbcSize,Metrics/MethodLength
  b.section(name: name) do |s|
    s.text "n :#{size}"
    s.text "n valid:#{count_values(*Daru::MISSING_VALUES)}"
    if @type == :object
      s.text  "factors: #{factors.to_a.join(',')}"
      s.text  "mode: #{mode}"

      s.table(name: 'Distribution') do |t|
        frequencies.sort_by(&:to_s).each do |k,v|
          key = @index.include?(k) ? @index[k] : k
          t.row [key, v, ('%0.2f%%' % (v.quo(count_values(*Daru::MISSING_VALUES))*100))]
        end
      end
    end

    s.text "median: #{median}" if @type==:numeric || @type==:numeric
    if @type==:numeric
      s.text 'mean: %0.4f' % mean
      if sd
        s.text 'std.dev.: %0.4f' % sd
        s.text 'std.err.: %0.4f' % se
        s.text 'skew: %0.4f' % skew
        s.text 'kurtosis: %0.4f' % kurtosis
      end
    end
  end
end

#reset_index!Object


706
707
708
709
# File 'lib/daru/vector.rb', line 706

def reset_index!
  @index = Daru::Index.new(Array.new(size) { |i| i })
  self
end

#resort_index(vector_index, opts) ⇒ Object


596
597
598
599
600
601
602
603
# File 'lib/daru/vector.rb', line 596

def resort_index vector_index, opts
  if block_given?
    vector_index.sort { |(lv, _li), (rv, _ri)| yield(lv, rv) }
  else
    vector_index.sort(&DEFAULT_SORTER)
  end
    .tap { |res| res.reverse! unless opts[:ascending] }
end

#respond_to_missing?(name, include_private = false) ⇒ Boolean

Returns:

  • (Boolean)

1277
1278
1279
# File 'lib/daru/vector.rb', line 1277

def respond_to_missing?(name, include_private=false)
  name.to_s.end_with?('=') || has_index?(name) || super
end

#save(filename) ⇒ Object

Save the vector to a file

Arguments

  • filename - Path of file where the vector is to be saved


1231
1232
1233
# File 'lib/daru/vector.rb', line 1231

def save filename
  Daru::IO.save self, filename
end

#set_at(positions, val) ⇒ Object

Change value at given positions

Examples:

dv = Daru::Vector.new 'a'..'e'
dv.set_at [0, 1], 'x'
dv
# => #<Daru::Vector(5)>
#   0   x
#   1   x
#   2   c
#   3   d
#   4   e

Parameters:

  • *positions (Array<object>)

    positional values

  • val (object)

    value to assign


265
266
267
268
269
# File 'lib/daru/vector.rb', line 265

def set_at positions, val
  validate_positions(*positions)
  positions.map { |pos| @data[pos] = val }
  update_position_cache
end

#sizeObject


93
94
95
# File 'lib/daru/vector.rb', line 93

def size
  @data.size
end

#sort(opts = {}, &block) ⇒ Object

Sorts a vector according to its values. If a block is specified, the contents will be evaluated and data will be swapped whenever the block evaluates to true. Defaults to ascending order sorting. Any missing values will be put at the end of the vector. Preserves indexing. Default sort algorithm is quick sort.

Options

  • :ascending - if false, will sort in descending order. Defaults to true.

  • :type - Specify the sorting algorithm. Only supports quick_sort for now.

Usage

v = Daru::Vector.new ["My first guitar", "jazz", "guitar"]
# Say you want to sort these strings by length.
v.sort(ascending: false) { |a,b| a.length <=> b.length }

572
573
574
575
576
577
578
579
580
581
# File 'lib/daru/vector.rb', line 572

def sort opts={}, &block
  opts = {ascending: true}.merge(opts)

  vector_index = resort_index(@data.each_with_index, opts, &block)
  vector, index = vector_index.transpose

  index = @index.reorder index

  Daru::Vector.new(vector, index: index, name: @name, dtype: @dtype)
end

#sorted_data(&block) ⇒ Object

Just sort the data and get an Array in return using Enumerable#sort. Non-destructive. :nocov:


608
609
610
# File 'lib/daru/vector.rb', line 608

def sorted_data &block
  @data.to_a.sort(&block)
end

#split_by_separator(sep = ',') ⇒ Object

Returns a hash of Vectors, defined by the different values defined on the fields Example:

a=Daru::Vector.new(["a,b","c,d","a,b"])
a.split_by_separator
=>  {"a"=>#<Daru::Vector:0x7f2dbcc09d88
      @data=[1, 0, 1]>,
     "b"=>#<Daru::Vector:0x7f2dbcc09c48
      @data=[1, 1, 0]>,
    "c"=>#<Daru::Vector:0x7f2dbcc09b08
      @data=[0, 1, 1]>}

689
690
691
692
693
694
695
696
697
698
# File 'lib/daru/vector.rb', line 689

def split_by_separator sep=','
  split_data = splitted sep
  split_data
    .flatten.uniq.compact.map do |key|
    [
      key,
      Daru::Vector.new(split_data.map { |v| split_value(key, v) })
    ]
  end.to_h
end

#split_by_separator_freq(sep = ',') ⇒ Object


700
701
702
703
704
# File 'lib/daru/vector.rb', line 700

def split_by_separator_freq(sep=',')
  split_by_separator(sep).map { |k, v|
    [k, v.map(&:to_i).inject(:+)]
  }.to_h
end

#splitted(sep = ',') ⇒ Object

Return an Array with the data splitted by a separator.

a=Daru::Vector.new(["a,b","c,d","a,b","d"])
a.splitted
  =>
[["a","b"],["c","d"],["a","b"],["d"]]

664
665
666
667
668
669
670
671
672
673
674
# File 'lib/daru/vector.rb', line 664

def splitted sep=','
  @data.map do |s|
    if s.nil?
      nil
    elsif s.respond_to? :split
      s.split sep
    else
      [s]
    end
  end
end

#summary(method = :to_text) ⇒ Object

Create a summary of the Vector using Report Builder.


892
893
894
# File 'lib/daru/vector.rb', line 892

def summary(method=:to_text)
  ReportBuilder.new(no_title: true).add(self).send(method)
end

#tail(q = 10) ⇒ Object


425
426
427
428
# File 'lib/daru/vector.rb', line 425

def tail q=10
  start = [size - q, 0].max
  self[start..(size-1)]
end

#to_aObject

Return an array


868
869
870
# File 'lib/daru/vector.rb', line 868

def to_a
  @data.to_a
end

#to_category(opts = {}) ⇒ Daru::Vector

Converts a non category type vector to category type vector.

Parameters:

  • opts (Hash) (defaults to: {})

    options to convert to category

Options Hash (opts):

  • :ordered (true, false)

    Specify if vector is ordered or not. If it is ordered, it can be sorted and min, max like functions would work

  • :categories (Array)

    set categories in the specified order

Returns:


1258
1259
1260
1261
1262
1263
# File 'lib/daru/vector.rb', line 1258

def to_category opts={}
  dv = Daru::Vector.new to_a, type: :category, name: @name, index: @index
  dv.ordered = opts[:ordered] || false
  dv.categories = opts[:categories] if opts[:categories]
  dv
end

#to_dfDaru::DataFrame

Returns the vector as a single-vector dataframe.

Returns:


808
809
810
# File 'lib/daru/vector.rb', line 808

def to_df
  Daru::DataFrame.new({@name => @data}, name: @name, index: @index)
end

#to_gslObject

If dtype != gsl, will convert data to GSL::Vector with to_a. Otherwise returns the stored GSL::Vector object.

Raises:

  • (NoMethodError)

853
854
855
856
857
858
859
860
# File 'lib/daru/vector.rb', line 853

def to_gsl
  raise NoMethodError, 'Install gsl-nmatrix for access to this functionality.' unless Daru.has_gsl?
  if dtype == :gsl
    @data.data
  else
    GSL::Vector.alloc(reject_values(*Daru::MISSING_VALUES).to_a)
  end
end

#to_hObject

Convert to hash (explicit). Hash keys are indexes and values are the correspoding elements


863
864
865
# File 'lib/daru/vector.rb', line 863

def to_h
  @index.map { |index| [index, self[index]] }.to_h
end

#to_html(threshold = 30) ⇒ Object

Convert to html for iruby


878
879
880
881
882
883
884
885
# File 'lib/daru/vector.rb', line 878

def to_html threshold=30
  path = if index.is_a?(MultiIndex)
           File.expand_path('../iruby/templates/vector_mi.html.erb', __FILE__)
         else
           File.expand_path('../iruby/templates/vector.html.erb', __FILE__)
         end
  ERB.new(File.read(path).strip).result(binding)
end

#to_jsonObject

Convert the hash from to_h to json


873
874
875
# File 'lib/daru/vector.rb', line 873

def to_json(*)
  to_h.to_json
end

#to_matrix(axis = :horizontal) ⇒ Object

Convert Vector to a horizontal or vertical Ruby Matrix.

Arguments

  • axis - Specify whether you want a :horizontal or a :vertical matrix.


817
818
819
820
821
822
823
824
825
# File 'lib/daru/vector.rb', line 817

def to_matrix axis=:horizontal
  if axis == :horizontal
    Matrix[to_a]
  elsif axis == :vertical
    Matrix.columns([to_a])
  else
    raise ArgumentError, "axis should be either :horizontal or :vertical, not #{axis}"
  end
end

#to_nmatrix(axis = :horizontal) ⇒ NMatrix

Convert vector to nmatrix object

Examples:

dv = Daru::Vector.new [1, 2, 3]
dv.to_nmatrix
# =>
# [
#   [1, 2, 3] ]

Parameters:

  • axis (Symbol) (defaults to: :horizontal)

    :horizontal or :vertical

Returns:

  • (NMatrix)

    NMatrix object containing all values of the vector

Raises:

  • (ArgumentError)

836
837
838
839
840
841
842
843
844
845
846
847
848
849
# File 'lib/daru/vector.rb', line 836

def to_nmatrix axis=:horizontal
  raise ArgumentError, 'Can not convert to nmatrix'\
    'because the vector is numeric' unless numeric? && !include?(nil)

  case axis
  when :horizontal
    NMatrix.new [1, size], to_a
  when :vertical
    NMatrix.new [size, 1], to_a
  else
    raise ArgumentError, 'Invalid axis specified. '\
      'Valid axis are :horizontal and :vertical'
  end
end

#to_REXPObject

rubocop:disable Style/MethodName


17
18
19
# File 'lib/daru/extensions/rserve.rb', line 17

def to_REXP # rubocop:disable Style/MethodName
  Rserve::REXP::Wrapper.wrap(to_a)
end

#to_sObject


887
888
889
# File 'lib/daru/vector.rb', line 887

def to_s
  to_html
end

#typeObject

The type of data contained in the vector. Can be :object or :numeric. If the underlying dtype is an NMatrix, this method will return the data type of the NMatrix object.

Running through the data to figure out the kind of data is delayed to the last possible moment.


506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# File 'lib/daru/vector.rb', line 506

def type
  return @data.nm_dtype if dtype == :nmatrix

  if @type.nil? || @possibly_changed_type
    @type = :numeric
    each do |e|
      next if e.nil? || e.is_a?(Numeric)
      @type = :object
      break
    end
    @possibly_changed_type = false
  end

  @type
end

#uniqObject

Keep only unique elements of the vector alongwith their indexes.


541
542
543
544
545
546
# File 'lib/daru/vector.rb', line 541

def uniq
  uniq_vector = @data.uniq
  new_index   = uniq_vector.map { |element| index_of(element) }

  Daru::Vector.new uniq_vector, name: @name, index: new_index, dtype: @dtype
end

#verifyObject

Reports all values that doesn't comply with a condition. Returns a hash with the index of data and the invalid data.


652
653
654
655
656
657
# File 'lib/daru/vector.rb', line 652

def verify
  (0...size)
    .map { |i| [i, @data[i]] }
    .reject { |_i, val| yield(val) }
    .to_h
end

#where(bool_array) ⇒ Object

Return a new vector based on the contents of a boolean array. Use with the comparator methods to obtain meaningful results. See this notebook for a good overview of using #where.

Parameters:

  • bool_arry (Daru::Core::Query::BoolArray, Array<TrueClass, FalseClass>)

    The collection containing the true of false values. Each element in the Vector corresponding to a `true` in the bool_arry will be returned alongwith it's index.


417
418
419
# File 'lib/daru/vector.rb', line 417

def where bool_array
  Daru::Core::Query.vector_where self, bool_array
end