Class: Cosmos::BinaryAccessor

Inherits:
Object
  • Object
show all
Defined in:
lib/cosmos/packets/binary_accessor.rb,
ext/cosmos/ext/structure/structure.c

Overview

Provides methods for binary reading and writing

Constant Summary collapse

PACK_8_BIT_INT =

Constants for ruby packing directives

'c'
PACK_NATIVE_16_BIT_INT =
's'
PACK_LITTLE_ENDIAN_16_BIT_UINT =
'v'
PACK_BIG_ENDIAN_16_BIT_UINT =
'n'
PACK_NATIVE_32_BIT_INT =
'l'
PACK_NATIVE_32_BIT_UINT =
'L'
PACK_NATIVE_64_BIT_INT =
'q'
PACK_NATIVE_64_BIT_UINT =
'Q'
PACK_LITTLE_ENDIAN_32_BIT_UINT =
'V'
PACK_BIG_ENDIAN_32_BIT_UINT =
'N'
PACK_LITTLE_ENDIAN_32_BIT_FLOAT =
'e'
PACK_LITTLE_ENDIAN_64_BIT_FLOAT =
'E'
PACK_BIG_ENDIAN_32_BIT_FLOAT =
'g'
PACK_BIG_ENDIAN_64_BIT_FLOAT =
'G'
PACK_NULL_TERMINATED_STRING =
'Z*'
PACK_BLOCK =
'a*'
PACK_8_BIT_INT_ARRAY =
'c*'
PACK_8_BIT_UINT_ARRAY =
'C*'
PACK_NATIVE_16_BIT_INT_ARRAY =
's*'
PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY =
'n*'
PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY =
'v*'
PACK_NATIVE_32_BIT_INT_ARRAY =
'l*'
PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY =
'N*'
PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY =
'V*'
PACK_NATIVE_64_BIT_INT_ARRAY =
'q*'
PACK_NATIVE_64_BIT_UINT_ARRAY =
'Q*'
PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY =
'e*'
PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY =
'E*'
PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY =
'g*'
PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY =
'G*'
ZERO_STRING =

Additional Constants

"\000"
DATA_TYPES =

Valid data types

[:INT, :UINT, :FLOAT, :STRING, :BLOCK]
OVERFLOW_TYPES =

Valid overflow types

[:TRUNCATE, :SATURATE, :ERROR, :ERROR_ALLOW_HEX]
HOST_ENDIANNESS =

Store the host endianness so that it only has to be determined once

get_host_endianness()
ENDIANNESS =

Valid endianess

[:BIG_ENDIAN, :LITTLE_ENDIAN]
MIN_INT8 =
MIN_INT8
MAX_INT8 =
MAX_INT8
MAX_UINT8 =
MAX_UINT8
MIN_INT16 =
MIN_INT16
MAX_INT16 =
MAX_INT16
MAX_UINT16 =
MAX_UINT16
MIN_INT32 =
MIN_INT32
MAX_INT32 =
MAX_INT32
MAX_UINT32 =
MAX_UINT32
MIN_INT64 =
MIN_INT64
MAX_INT64 =
MAX_INT64
MAX_UINT64 =
MAX_UINT64

Class Method Summary collapse

Class Method Details

.adjust_packed_size(num_bytes, packed) ⇒ Object

Adjusts the packed array to be the given number of bytes

Parameters:

  • num_bytes (Integer)

    The desired number of bytes

  • packet (Array)

    The packed data buffer



546
547
548
549
550
551
552
553
554
# File 'lib/cosmos/packets/binary_accessor.rb', line 546

def self.adjust_packed_size(num_bytes, packed)
  difference = num_bytes - packed.length
  if difference > 0
    packed << (ZERO_STRING * difference)
  elsif difference < 0
    packed = packed[0..(packed.length - 1 + difference)]
  end
  packed
end

.byte_swap_buffer(buffer, num_bytes_per_word) ⇒ String

Byte swaps every X bytes of data in a buffer into a new buffer

Parameters:

  • buffer (String)

    Buffer that will be copied then modified

  • num_bytes_per_word (Integer)

    Number of bytes per word that will be swapped

Returns:

  • (String)

    modified buffer



577
578
579
580
# File 'lib/cosmos/packets/binary_accessor.rb', line 577

def self.byte_swap_buffer(buffer, num_bytes_per_word)
  buffer = buffer.clone
  self.byte_swap_buffer!(buffer, num_bytes_per_word)
end

.byte_swap_buffer!(buffer, num_bytes_per_word) ⇒ String

Byte swaps every X bytes of data in a buffer overwriting the buffer

Parameters:

  • buffer (String)

    Buffer to modify

  • num_bytes_per_word (Integer)

    Number of bytes per word that will be swapped

Returns:

  • (String)

    buffer passed in as a parameter



561
562
563
564
565
566
567
568
569
570
# File 'lib/cosmos/packets/binary_accessor.rb', line 561

def self.byte_swap_buffer!(buffer, num_bytes_per_word)
  num_swaps = buffer.length / num_bytes_per_word
  index = 0
  num_swaps.times do
    range = index..(index + num_bytes_per_word - 1)
    buffer[range] = buffer[range].reverse
    index += num_bytes_per_word
  end
  buffer
end

.check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow) ⇒ Integer

Checks for overflow of an integer data type

Parameters:

  • value (Integer)

    Value to write into the buffer

  • min_value (Integer)

    Minimum allowed value

  • max_value (Integer)

    Maximum allowed value

  • hex_max_value (Integer)

    Maximum allowed value if specified in hex

  • bit_size (Integer)

    Size of the item in bits

  • data_type (Symbol)
  • overflow (Symbol)

Returns:

  • (Integer)

    Potentially modified value



592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# File 'lib/cosmos/packets/binary_accessor.rb', line 592

def self.check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow)
  if overflow != :TRUNCATE
    if value > max_value
      if overflow == :SATURATE
        value = max_value
      else
        if overflow == :ERROR or value > hex_max_value
          raise ArgumentError, "value of #{value} invalid for #{bit_size}-bit #{data_type}"
        end
      end
    elsif value < min_value
      if overflow == :SATURATE
        value = min_value
      else
        raise ArgumentError, "value of #{value} invalid for #{bit_size}-bit #{data_type}"
      end
    end
  end
  value
end

.check_overflow_array(values, min_value, max_value, hex_max_value, bit_size, data_type, overflow) ⇒ Array[Integer]

Checks for overflow of an array of integer data types

Parameters:

  • values (Array[Integer])

    Values to write into the buffer

  • min_value (Integer)

    Minimum allowed value

  • max_value (Integer)

    Maximum allowed value

  • hex_max_value (Integer)

    Maximum allowed value if specified in hex

  • bit_size (Integer)

    Size of the item in bits

  • data_type (Symbol)
  • overflow (Symbol)

Returns:

  • (Array[Integer])

    Potentially modified values



623
624
625
626
627
628
629
630
# File 'lib/cosmos/packets/binary_accessor.rb', line 623

def self.check_overflow_array(values, min_value, max_value, hex_max_value, bit_size, data_type, overflow)
  if overflow != :TRUNCATE
    values.each_with_index do |value, index|
      values[index] = check_overflow(value, min_value, max_value, hex_max_value, bit_size, data_type, overflow)
    end
  end
  values
end

.read(param_bit_offset, param_bit_size, param_data_type, param_buffer, param_endianness) ⇒ Integer

Reads binary data of any data type from a buffer

Parameters:

  • bit_offset (Integer)

    Bit offset to the start of the item. A negative number means to offset from the end of the buffer.

  • bit_size (Integer)

    Size of the item in bits

  • data_type (Symbol)
  • buffer (String)

    Binary string buffer to read from

  • endianness (Symbol)

Returns:

  • (Integer)

    value read from the buffer



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# File 'ext/cosmos/ext/structure/structure.c', line 425

static VALUE binary_accessor_read(VALUE self, VALUE param_bit_offset, VALUE param_bit_size, VALUE param_data_type, VALUE param_buffer, VALUE param_endianness)
{
  /* Convert Parameters to C Data Types */
  int bit_offset = FIX2INT(param_bit_offset);
  int bit_size = FIX2INT(param_bit_size);

  /* Local Variables */
  int given_bit_offset = bit_offset;
  int given_bit_size = bit_size;
  signed char signed_char_value = 0;
  unsigned char unsigned_char_value = 0;
  signed short signed_short_value = 0;
  unsigned short unsigned_short_value = 0;
  signed int signed_int_value = 0;
  signed long signed_long_value = 0;
  unsigned int unsigned_int_value = 0;
  signed long long signed_long_long_value = 0;
  unsigned long long unsigned_long_long_value = 0;
  unsigned char* unsigned_char_array = NULL;
  int array_length = 0;
  char* string = NULL;
  int string_length = 0;
  float float_value = 0.0;
  double double_value = 0.0;
  int shift_needed = 0;
  int shift_count = 0;
  int index = 0;
  int num_bits = 0;
  int num_bytes = 0;
  int num_words = 0;
  int upper_bound = 0;
  int lower_bound = 0;
  volatile VALUE temp_value = Qnil;
  volatile VALUE return_value = Qnil;

  unsigned char* buffer = NULL;
  long buffer_length = 0;

  Check_Type(param_buffer, T_STRING);
  buffer = (unsigned char*) RSTRING_PTR(param_buffer);
  buffer_length = RSTRING_LEN(param_buffer);

  check_bit_offset_and_size(self, symbol_read, param_bit_offset, param_bit_size,
      param_data_type, param_buffer, &bit_offset);

  /* If passed a negative bit size with strings or blocks
   * recalculate based on the buffer length */
  if ((bit_size <= 0) && ((param_data_type == symbol_STRING) || (param_data_type == symbol_BLOCK))) {
    bit_size = (((int)buffer_length * 8) - bit_offset + bit_size);
    if (bit_size == 0) {
      return rb_str_new2("");
    } else if (bit_size < 0) {
      rb_funcall(self, id_method_raise_buffer_error, 5, symbol_read, param_buffer, param_data_type, param_bit_offset, param_bit_size);
    }
  }

  if (!check_bounds_and_buffer_size(bit_offset, bit_size, buffer_length, param_endianness, param_data_type, &lower_bound, &upper_bound))
  {
    rb_funcall(self, id_method_raise_buffer_error, 5, symbol_read, param_buffer, param_data_type, param_bit_offset, param_bit_size);
  }

  if ((param_data_type == symbol_STRING) || (param_data_type == symbol_BLOCK)) {
    /*#######################################
     *# Handle :STRING and :BLOCK data types
     *#######################################*/

    if (BYTE_ALIGNED(bit_offset)) {
      string_length = upper_bound - lower_bound + 1;
      string = malloc(string_length + 1);
      memcpy(string, buffer + lower_bound, string_length);
      string[string_length] = 0;
      if (param_data_type == symbol_STRING) {
        return_value = rb_str_new2(string);
      } else /* param_data_type == symbol_BLOCK */ {
        return_value = rb_str_new(string, string_length);
      }
      free(string);
    } else {
      rb_raise(rb_eArgError, "bit_offset %d is not byte aligned for data_type %s", given_bit_offset, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
    }

  } else if (param_data_type == symbol_INT) {
    /*###################################
     *# Handle :INT data type
     *###################################*/

    if ((BYTE_ALIGNED(bit_offset)) && (even_bit_size(bit_size)))
    {
      /*###########################################################
       *# Handle byte-aligned 8, 16, 32, and 64 bit :INT
       *###########################################################*/

      switch (bit_size) {
        case 8:
          signed_char_value = *((signed char*) &buffer[lower_bound]);
          return_value = INT2FIX(signed_char_value);
          break;
        case 16:
          read_aligned_16(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &signed_short_value);
          return_value = INT2FIX(signed_short_value);
          break;
        case 32:
          read_aligned_32(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &signed_int_value);
          return_value = INT2NUM(signed_int_value);
          break;
        case 64:
          read_aligned_64(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &signed_long_long_value);
          return_value = LL2NUM(signed_long_long_value);
          break;
      }
    } else {
      string_length = ((bit_size - 1)/ 8) + 1;
      array_length = string_length + 4; /* Required number of bytes plus slack */
      unsigned_char_array = (unsigned char*) malloc(array_length);
      read_bitfield(lower_bound, upper_bound, bit_offset, bit_size, given_bit_offset, given_bit_size, param_endianness, buffer, (int)buffer_length, unsigned_char_array);

      num_words = ((string_length - 1) / 4) + 1;
      num_bytes = num_words * 4;
      num_bits = num_bytes * 8;
      shift_needed = num_bits - bit_size;
      shift_count = shift_needed / 8;
      shift_needed = shift_needed % 8;

      if (bit_size > 1) {
        for (index = 0; index < shift_count; index++) {
          signed_right_shift_byte_array(unsigned_char_array, num_bytes, 8);
        }

        if (shift_needed > 0) {
          signed_right_shift_byte_array(unsigned_char_array, num_bytes, shift_needed);
        }
      } else {
        for (index = 0; index < shift_count; index++) {
          unsigned_right_shift_byte_array(unsigned_char_array, num_bytes, 8);
        }

        if (shift_needed > 0) {
          unsigned_right_shift_byte_array(unsigned_char_array, num_bytes, shift_needed);
        }
      }

      if (HOST_ENDIANNESS == symbol_LITTLE_ENDIAN) {
        for (index = 0; index < num_bytes; index += 4) {
          reverse_bytes(&(unsigned_char_array[index]), 4);
        }
      }

      if (bit_size <= 31) {
        return_value = INT2FIX(*((int*) unsigned_char_array));
      } else if (bit_size == 32) {
        return_value = INT2NUM(*((int*) unsigned_char_array));
      } else {
        return_value = rb_int2big(*((int*) unsigned_char_array));
        temp_value = INT2FIX(32);
        for (index = 4; index < num_bytes; index += 4) {
          return_value = rb_big_lshift(return_value, temp_value);
          if (FIXNUM_P(return_value)) {
            signed_long_value = FIX2LONG(return_value);
            return_value = rb_int2big(signed_long_value);
          }
          return_value = rb_big_plus(return_value, UINT2NUM(*((unsigned int*) &(unsigned_char_array[index]))));
          if (FIXNUM_P(return_value)) {
            signed_long_value = FIX2LONG(return_value);
            return_value = rb_int2big(signed_long_value);
          }
        }
        return_value = rb_big_norm(return_value);
      }

      free(unsigned_char_array);
    }

  } else if (param_data_type == symbol_UINT) {
    /*###################################
     *# Handle :UINT data type
     *###################################*/

    if ((BYTE_ALIGNED(bit_offset)) && (even_bit_size(bit_size)))
    {
      /*###########################################################
       *# Handle byte-aligned 8, 16, 32, and 64 bit :UINT
       *###########################################################*/

      switch (bit_size) {
        case 8:
          unsigned_char_value = buffer[lower_bound];
          return_value = INT2FIX(unsigned_char_value);
          break;
        case 16:
          read_aligned_16(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &unsigned_short_value);
          return_value = INT2FIX(unsigned_short_value);
          break;
        case 32:
          read_aligned_32(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &unsigned_int_value);
          return_value = UINT2NUM(unsigned_int_value);
          break;
        case 64:
          read_aligned_64(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &unsigned_long_long_value);
          return_value = ULL2NUM(unsigned_long_long_value);
          break;
      }
    } else {
      string_length = ((bit_size - 1)/ 8) + 1;
      array_length = string_length + 4; /* Required number of bytes plus slack */
      unsigned_char_array = (unsigned char*) malloc(array_length);
      read_bitfield(lower_bound, upper_bound, bit_offset, bit_size, given_bit_offset, given_bit_size, param_endianness, buffer, (int)buffer_length, unsigned_char_array);

      num_words = ((string_length - 1) / 4) + 1;
      num_bytes = num_words * 4;
      num_bits = num_bytes * 8;
      shift_needed = num_bits - bit_size;
      shift_count = shift_needed / 8;
      shift_needed = shift_needed % 8;

      for (index = 0; index < shift_count; index++) {
        unsigned_right_shift_byte_array(unsigned_char_array, num_bytes, 8);
      }

      if (shift_needed > 0) {
        unsigned_right_shift_byte_array(unsigned_char_array, num_bytes, shift_needed);
      }

      if (HOST_ENDIANNESS == symbol_LITTLE_ENDIAN) {
        for (index = 0; index < num_bytes; index += 4) {
          reverse_bytes(&(unsigned_char_array[index]), 4);
        }
      }

      if (bit_size <= 30) {
        return_value = INT2FIX(*((int*) unsigned_char_array));
      } else if (bit_size <= 32) {
        return_value = UINT2NUM(*((unsigned int*) unsigned_char_array));
      } else {
        return_value = rb_uint2big(*((unsigned int*) unsigned_char_array));
        temp_value = INT2FIX(32);
        for (index = 4; index < num_bytes; index += 4) {
          return_value = rb_big_lshift(return_value, temp_value);
          if (FIXNUM_P(return_value)) {
            signed_long_value = FIX2LONG(return_value);
            return_value = rb_int2big(signed_long_value);
          }
          return_value = rb_big_plus(return_value, UINT2NUM(*((unsigned int*) &(unsigned_char_array[index]))));
          if (FIXNUM_P(return_value)) {
            signed_long_value = FIX2LONG(return_value);
            return_value = rb_int2big(signed_long_value);
          }
        }
        return_value = rb_big_norm(return_value);
      }

      free(unsigned_char_array);
    }

  } else if (param_data_type == symbol_FLOAT) {
    /*##########################
     *# Handle :FLOAT data type
     *##########################*/

    if (BYTE_ALIGNED(bit_offset)) {
      switch (bit_size) {
        case 32:
          read_aligned_32(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &float_value);
          return_value = rb_float_new(float_value);
          break;

        case 64:
          read_aligned_64(lower_bound, upper_bound, param_endianness, buffer, (unsigned char*) &double_value);
          return_value = rb_float_new(double_value);
          break;

        default:
          rb_raise(rb_eArgError, "bit_size is %d but must be 32 or 64 for data_type %s", given_bit_size, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
          break;
      };
    } else {
      rb_raise(rb_eArgError, "bit_offset %d is not byte aligned for data_type %s", given_bit_offset, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
    }

  } else {
    /*############################
     *# Handle Unknown data types
     *############################*/

    rb_raise(rb_eArgError, "data_type %s is not recognized", RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
  }

  return return_value;
}

.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness) ⇒ Array

Reads an array of binary data of any data type from a buffer

Parameters:

  • bit_offset (Integer)

    Bit offset to the start of the array. A negative number means to offset from the end of the buffer.

  • bit_size (Integer)

    Size of each item in the array in bits

  • data_type (Symbol)
  • array_size (Integer)

    Size in bits of the array. 0 or negative means fill the array with as many bit_size number of items that exist (negative means excluding the final X number of bits).

  • buffer (String)

    Binary string buffer to read from

  • endianness (Symbol)

Returns:

  • (Array)

    Array created from reading the buffer

Raises:

  • (ArgumentError)


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# File 'lib/cosmos/packets/binary_accessor.rb', line 128

def self.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness)
  # Save given values of bit offset, bit size, and array_size
  given_bit_offset = bit_offset
  given_bit_size = bit_size
  given_array_size = array_size

  # Handle negative and zero bit sizes
  raise ArgumentError, "bit_size #{given_bit_size} must be positive for arrays" if bit_size <= 0

  # Handle negative bit offsets
  if bit_offset < 0
    bit_offset = ((buffer.length * 8) + bit_offset)
    raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) if bit_offset < 0
  end

  # Handle negative and zero array sizes
  if array_size <= 0
    if given_bit_offset < 0
      raise ArgumentError, "negative or zero array_size (#{given_array_size}) cannot be given with negative bit_offset (#{given_bit_offset})"
    else
      array_size = ((buffer.length * 8) - bit_offset + array_size)
      if array_size == 0
        return []
      elsif array_size < 0
        raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size)
      end
    end
  end

  # Calculate number of items in the array
  # If there is a remainder then we have a problem
  raise ArgumentError, "array_size #{given_array_size} not a multiple of bit_size #{given_bit_size}" if array_size % bit_size != 0
  num_items = array_size / bit_size

  # Define bounds of string to access this item
  lower_bound = bit_offset / 8
  upper_bound = (bit_offset + array_size - 1) / 8

  # Check for byte alignment
  byte_aligned = ((bit_offset % 8) == 0)

  case data_type
  when :STRING, :BLOCK
    #######################################
    # Handle :STRING and :BLOCK data types
    #######################################

    if byte_aligned
      value = []
      num_items.times do
        value << self.read(bit_offset, bit_size, data_type, buffer, endianness)
        bit_offset += bit_size
      end
    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  when :INT, :UINT
    ###################################
    # Handle :INT and :UINT data types
    ###################################

    if byte_aligned and (bit_size == 8 or bit_size == 16 or bit_size == 32 or bit_size == 64)
      ###########################################################
      # Handle byte-aligned 8, 16, 32, and 64 bit :INT and :UINT
      ###########################################################

      case bit_size
      when 8
        if data_type == :INT
          value = buffer[lower_bound..upper_bound].unpack(PACK_8_BIT_INT_ARRAY)
        else # data_type == :UINT
          value = buffer[lower_bound..upper_bound].unpack(PACK_8_BIT_UINT_ARRAY)
        end

      when 16
        if data_type == :INT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_16_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 2)
            value = temp.to_s.unpack(PACK_NATIVE_16_BIT_INT_ARRAY)
          end
        else # data_type == :UINT
          if endianness == :BIG_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY)
          end
        end

      when 32
        if data_type == :INT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_32_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 4)
            value = temp.to_s.unpack(PACK_NATIVE_32_BIT_INT_ARRAY)
          end
        else # data_type == :UINT
          if endianness == :BIG_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY)
          end
        end

      when 64
        if data_type == :INT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 8)
            value = temp.to_s.unpack(PACK_NATIVE_64_BIT_INT_ARRAY)
          end
        else # data_type == :UINT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_UINT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 8)
            value = temp.to_s.unpack(PACK_NATIVE_64_BIT_UINT_ARRAY)
          end
        end
      end

    else
      ##################################
      # Handle :INT and :UINT Bitfields
      ##################################
      raise ArgumentError, "read_array does not support little endian bit fields with bit_size greater than 1-bit" if endianness == :LITTLE_ENDIAN and bit_size > 1

      value = []
      num_items.times do
        value << self.read(bit_offset, bit_size, data_type, buffer, endianness)
        bit_offset += bit_size
      end
    end

  when :FLOAT
    ##########################
    # Handle :FLOAT data type
    ##########################

    if byte_aligned
      case bit_size
      when 32
        if endianness == :BIG_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY)
        end

      when 64
        if endianness == :BIG_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY)
        end

      else
        raise ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}"
      end

    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  else
    ############################
    # Handle Unknown data types
    ############################

    raise ArgumentError, "data_type #{data_type} is not recognized"
  end

  value
end

.write(value, param_bit_offset, param_bit_size, param_data_type, param_buffer, param_endianness, param_overflow) ⇒ Integer

Writes binary data of any data type to a buffer

Parameters:

  • bit_offset (Integer)

    Bit offset to the start of the item. A negative number means to offset from the end of the buffer.

  • bit_size (Integer)

    Size of the item in bits

  • data_type (Symbol)
  • buffer (String)

    Binary string buffer to read from

  • endianness (Symbol)

Returns:

  • (Integer)

    value read from the buffer



828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
# File 'ext/cosmos/ext/structure/structure.c', line 828

static VALUE binary_accessor_write(VALUE self, VALUE value, VALUE param_bit_offset, VALUE param_bit_size, VALUE param_data_type, VALUE param_buffer, VALUE param_endianness, VALUE param_overflow)
{
  /* Convert Parameters to C Data Types */
  int bit_offset = NUM2INT(param_bit_offset);
  int bit_size = NUM2INT(param_bit_size);
  /* Local Variables */
  int given_bit_offset = bit_offset;
  int given_bit_size = bit_size;
  int upper_bound = 0;
  int lower_bound = 0;
  int end_bytes = 0;
  int old_upper_bound = 0;
  int byte_size = 0;

  unsigned long long c_value = 0;
  float float_value = 0.0;
  double double_value = 0.0;

  unsigned char* buffer = NULL;
  long buffer_length = 0;
  long value_length = 0;
  volatile VALUE temp_shift = Qnil;
  volatile VALUE temp_mask = Qnil;
  volatile VALUE temp_result = Qnil;

  int string_length = 0;
  unsigned char* unsigned_char_array = NULL;
  int array_length = 0;
  int shift_needed = 0;
  int shift_count = 0;
  int index = 0;
  int num_bits = 0;
  int num_bytes = 0;
  int num_words = 0;

  Check_Type(param_buffer, T_STRING);
  buffer = (unsigned char*) RSTRING_PTR(param_buffer);
  buffer_length = RSTRING_LEN(param_buffer);

  check_bit_offset_and_size(self, symbol_write, param_bit_offset, param_bit_size,
      param_data_type, param_buffer, &bit_offset);

  /* If passed a negative bit size with strings or blocks
   * recalculate based on the value length in bytes */
  if ((bit_size <= 0) && ((param_data_type == symbol_STRING) || (param_data_type == symbol_BLOCK))) {
    if (!RB_TYPE_P(value, T_STRING)) {
      value = rb_funcall(value, id_method_to_s, 0);
    }
    bit_size = RSTRING_LEN(value) * 8;
  }

  if ((!check_bounds_and_buffer_size(bit_offset, bit_size, buffer_length, param_endianness, param_data_type, &lower_bound, &upper_bound)) && (given_bit_size > 0))
  {
    rb_funcall(self, id_method_raise_buffer_error, 5, symbol_write, param_buffer, param_data_type, param_bit_offset, param_bit_size);
  }

  /* Check overflow type */
  if ((param_overflow != symbol_TRUNCATE) &&
      (param_overflow != symbol_SATURATE) &&
      (param_overflow != symbol_ERROR) &&
      (param_overflow != symbol_ERROR_ALLOW_HEX)) {
    rb_raise(rb_eArgError, "unknown overflow type %s", RSTRING_PTR(rb_funcall(param_overflow, id_method_to_s, 0)));
  }

  if ((param_data_type == symbol_STRING) || (param_data_type == symbol_BLOCK)) {
    /*#######################################
     *# Handle :STRING and :BLOCK data types
     *#######################################*/
    /* Force value to be a string */
    if (!RB_TYPE_P(value, T_STRING)) {
      value = rb_funcall(value, id_method_to_s, 0);
    }

    if (BYTE_ALIGNED(bit_offset)) {
      value_length = RSTRING_LEN(value);

      if (given_bit_size <= 0) {
        end_bytes = -(given_bit_size / 8);
        old_upper_bound = buffer_length - 1 - end_bytes;
        /* Lower bound + end_bytes can never be more than 1 byte outside of the given buffer */
        if ((lower_bound + end_bytes) > buffer_length)
        {
          rb_funcall(self, id_method_raise_buffer_error, 5, symbol_write, param_buffer, param_data_type, param_bit_offset, param_bit_size);
        }

        if (old_upper_bound < lower_bound) {
          /* String was completely empty */
          if (end_bytes > 0) {
            /* Preserve bytes at end of buffer */
            rb_str_concat(param_buffer, rb_str_times(ZERO_STRING, INT2FIX(value_length)));
            buffer = (unsigned char*) RSTRING_PTR(param_buffer);
            memmove((buffer + lower_bound + value_length), (buffer + lower_bound), end_bytes);
          }
        } else if (bit_size == 0) {
          /* Remove entire string */
          rb_str_update(param_buffer, lower_bound, old_upper_bound - lower_bound + 1, rb_str_new2(""));
        } else if (upper_bound < old_upper_bound) {
          /* Remove extra bytes from old string */
          rb_str_update(param_buffer, upper_bound + 1, old_upper_bound - upper_bound, rb_str_new2(""));
        } else if ((upper_bound > old_upper_bound) && (end_bytes > 0)) {
          /* Preserve bytes at end of buffer */
          rb_str_concat(param_buffer, rb_str_times(ZERO_STRING, INT2FIX(upper_bound - old_upper_bound)));
          buffer = (unsigned char*) RSTRING_PTR(param_buffer);
          memmove((buffer + upper_bound + 1), (buffer + old_upper_bound + 1), end_bytes);
        }
      } else {
        byte_size = bit_size / 8;
        if (value_length < byte_size) {
          /* Pad the requested size with zeros.
           * Tell Ruby we are going to be modifying the buffer with a memset */
          rb_str_modify(param_buffer);
          memset(RSTRING_PTR(param_buffer) + lower_bound + value_length, 0, byte_size - value_length);
        } else if (value_length > byte_size) {
          if (param_overflow == symbol_TRUNCATE) {
            /* Resize the value to fit the field */
            rb_str_update(value, byte_size, RSTRING_LEN(value) - byte_size, rb_str_new2(""));
          } else {
            rb_raise(rb_eArgError, "value of %d bytes does not fit into %d bytes for data_type %s", (int)value_length, byte_size, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
          }
        }
      }
      if (bit_size != 0) {
        rb_str_update(param_buffer, lower_bound, RSTRING_LEN(value), value);
      }
    } else {
      rb_raise(rb_eArgError, "bit_offset %d is not byte aligned for data_type %s", given_bit_offset, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
    }

  } else if ((param_data_type == symbol_INT) || (param_data_type == symbol_UINT)) {
    /*###################################
     *# Handle :INT data type
     *###################################*/
    value = rb_funcall(rb_mKernel, id_method_Integer, 1, value);

    if ((BYTE_ALIGNED(bit_offset)) && (even_bit_size(bit_size)))
    {
      /*###########################################################
       *# Handle byte-aligned 8, 16, 32, and 64 bit
       *###########################################################*/

      value = check_overflow(value, bit_size, param_data_type, param_overflow);
      switch (bit_size) {
        case 8:
          c_value = NUM2CHR(value);
          break;
        case 16:
          c_value = NUM2USHORT(value);
          break;
        case 32:
          c_value = NUM2UINT(value);
          break;
        case 64:
          c_value = NUM2ULL(value);
          break;
      }
      /* If the passed endianess doesn't match the host we reverse the bytes.
       * Then shift the result over so it's at the bottom of the long long value. */
      if (param_endianness != HOST_ENDIANNESS) {
        reverse_bytes((unsigned char *)&c_value, 8);
        c_value = (c_value >> (64 - bit_size));
      }
      /* Tell Ruby we are going to be modifying the buffer with a memcpy */
      rb_str_modify(param_buffer);
      memcpy((RSTRING_PTR(param_buffer) + lower_bound), &c_value, bit_size / 8);

    } else {
      /*###########################################################
       *# Handle bit fields
       *###########################################################*/
      value = check_overflow(value, bit_size, param_data_type, param_overflow);

      string_length = ((bit_size - 1)/ 8) + 1;
      array_length = string_length + 4; /* Required number of bytes plus slack */
      unsigned_char_array = (unsigned char*) malloc(array_length);

      num_words = ((string_length - 1) / 4) + 1;
      num_bytes = num_words * 4;
      num_bits = num_bytes * 8;
      shift_needed = num_bits - bit_size;
      shift_count = shift_needed / 8;
      shift_needed = shift_needed % 8;

      /* Convert value into array of bytes */
      if (bit_size <= 30) {
        *((int *)unsigned_char_array) = FIX2INT(value);
      } else if (bit_size <= 32) {
        *((unsigned int *)unsigned_char_array) = NUM2UINT(value);
      } else {
        temp_mask = UINT2NUM(0xFFFFFFFF);
        temp_shift = INT2FIX(32);
        temp_result = rb_big_and(TO_BIGNUM(value), temp_mask);
        /* Work around bug where rb_big_and will return Qfalse if given a first parameter of 0 */
        if (temp_result == Qfalse) { temp_result = INT2FIX(0); }
        *((unsigned int *)&(unsigned_char_array[num_bytes - 4])) = NUM2UINT(temp_result);
        for (index = num_bytes - 8; index >= 0; index -= 4) {
          value = rb_big_rshift(TO_BIGNUM(value), temp_shift);
          temp_result = rb_big_and(TO_BIGNUM(value), temp_mask);
          /* Work around bug where rb_big_and will return Qfalse if given a first parameter of 0 */
          if (temp_result == Qfalse) { temp_result = INT2FIX(0); }
          *((unsigned int *)&(unsigned_char_array[index])) = NUM2UINT(temp_result);
        }
      }

      if (HOST_ENDIANNESS == symbol_LITTLE_ENDIAN) {
        for (index = 0; index < num_bytes; index += 4) {
          reverse_bytes(&(unsigned_char_array[index]), 4);
        }
      }

      for (index = 0; index < shift_count; index++) {
        left_shift_byte_array(unsigned_char_array, num_bytes, 8);
      }

      if (shift_needed > 0) {
        left_shift_byte_array(unsigned_char_array, num_bytes, shift_needed);
      }

      rb_str_modify(param_buffer);
      write_bitfield(lower_bound, upper_bound, bit_offset, bit_size, given_bit_offset, given_bit_size, param_endianness, (unsigned char*) RSTRING_PTR(param_buffer), (int)buffer_length, unsigned_char_array);

      free(unsigned_char_array);
    }

  } else if (param_data_type == symbol_FLOAT) {
    /*##########################
     *# Handle :FLOAT data type
     *##########################*/
    value = rb_funcall(rb_mKernel, id_method_Float, 1, value);

    if (BYTE_ALIGNED(bit_offset)) {
      switch (bit_size) {
        case 32:
          float_value = (float)RFLOAT_VALUE(value);
          if (param_endianness != HOST_ENDIANNESS) {
            reverse_bytes((unsigned char *)&float_value, 4);
          }
          rb_str_modify(param_buffer);
          memcpy((RSTRING_PTR(param_buffer) + lower_bound), &float_value, 4);
          break;

        case 64:
          double_value = RFLOAT_VALUE(value);
          if (param_endianness != HOST_ENDIANNESS) {
            reverse_bytes((unsigned char *)&double_value, 8);
          }
          rb_str_modify(param_buffer);
          memcpy((RSTRING_PTR(param_buffer) + lower_bound), &double_value, 8);
          break;

        default:
          rb_raise(rb_eArgError, "bit_size is %d but must be 32 or 64 for data_type %s", given_bit_size, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
          break;
      };
    } else {
      rb_raise(rb_eArgError, "bit_offset %d is not byte aligned for data_type %s", given_bit_offset, RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
    }

  } else {
    /*############################
     *# Handle Unknown data types
     *############################*/

    rb_raise(rb_eArgError, "data_type %s is not recognized", RSTRING_PTR(rb_funcall(param_data_type, id_method_to_s, 0)));
  }

  return value;
}

.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow) ⇒ Array

Writes an array of binary data of any data type to a buffer

Parameters:

  • values (Array)

    Values to write into the buffer

  • bit_offset (Integer)

    Bit offset to the start of the array. A negative number means to offset from the end of the buffer.

  • bit_size (Integer)

    Size of each item in the array in bits

  • data_type (Symbol)
  • array_size (Integer)

    Size in bits of the array as represented in the buffer. Size 0 means to fill the buffer with as many bit_size number of items that exist (negative means excluding the final X number of bits).

  • buffer (String)

    Binary string buffer to write to

  • endianness (Symbol)

Returns:

  • (Array)

    values passed in as a parameter

Raises:

  • (ArgumentError)


319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# File 'lib/cosmos/packets/binary_accessor.rb', line 319

def self.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow)
  # Save given values of bit offset, bit size, and array_size
  given_bit_offset = bit_offset
  given_bit_size = bit_size
  given_array_size = array_size

  # Verify an array was given
  raise ArgumentError, "values must be an Array type class is #{values.class}" unless values.kind_of? Array

  # Handle negative and zero bit sizes
  raise ArgumentError, "bit_size #{given_bit_size} must be positive for arrays" if bit_size <= 0

  # Handle negative bit offsets
  if bit_offset < 0
    bit_offset = ((buffer.length * 8) + bit_offset)
    raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size) if bit_offset < 0
  end

  # Handle negative and zero array sizes
  if array_size <= 0
    if given_bit_offset < 0
      raise ArgumentError, "negative or zero array_size (#{given_array_size}) cannot be given with negative bit_offset (#{given_bit_offset})"
    else
      end_bytes = -(given_array_size / 8)
      lower_bound = bit_offset / 8
      upper_bound = (bit_offset + (bit_size * values.length) - 1) / 8
      old_upper_bound = buffer.length - 1 - end_bytes

      if upper_bound < old_upper_bound
        # Remove extra bytes from old buffer
        buffer[(upper_bound + 1)..old_upper_bound] = ''
      elsif upper_bound > old_upper_bound
        # Grow buffer and preserve bytes at end of buffer if necesssary
        buffer_length = buffer.length
        diff = upper_bound - old_upper_bound
        buffer << ZERO_STRING * diff
        if end_bytes > 0
          buffer[(upper_bound + 1)..(buffer.length - 1)] = buffer[(old_upper_bound + 1)..(buffer_length - 1)]
        end
      end

      array_size = ((buffer.length * 8) - bit_offset + array_size)
    end
  end

  # Get data bounds for this array
  lower_bound = bit_offset / 8
  upper_bound = (bit_offset + array_size - 1) / 8
  num_bytes   = upper_bound - lower_bound + 1

  # Check for byte alignment
  byte_aligned = ((bit_offset % 8) == 0)

  # Calculate the number of writes
  num_writes = array_size / bit_size
  # Check for a negative array_size and adjust the number of writes
  # to simply be the number of values in the passed in array
  if given_array_size <= 0
    num_writes = values.length
  end

  # Ensure the buffer has enough room
  if bit_offset + num_writes * bit_size > buffer.length * 8
    raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size)
  end

  # Ensure the given_array_size is an even multiple of bit_size
  raise ArgumentError, "array_size #{given_array_size} not a multiple of bit_size #{given_bit_size}" if array_size % bit_size != 0

  raise ArgumentError, "too many values #{values.length} for given array_size #{given_array_size} and bit_size #{given_bit_size}" if num_writes < values.length

  # Check overflow type
  raise "unknown overflow type #{overflow}" unless OVERFLOW_TYPES.include?(overflow)

  case data_type
  when :STRING, :BLOCK
    #######################################
    # Handle :STRING and :BLOCK data types
    #######################################

    if byte_aligned
      num_writes.times do |index|
        self.write(values[index], bit_offset, bit_size, data_type, buffer, endianness, overflow)
        bit_offset += bit_size
      end
    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  when :INT, :UINT
    ###################################
    # Handle :INT and :UINT data types
    ###################################

    if byte_aligned and (bit_size == 8 or bit_size == 16 or bit_size == 32 or bit_size == 64)
      ###########################################################
      # Handle byte-aligned 8, 16, 32, and 64 bit :INT and :UINT
      ###########################################################

      case bit_size
      when 8
        if data_type == :INT
          values = self.check_overflow_array(values, -128, 127, 255, bit_size, data_type, overflow)
          packed = values.pack(PACK_8_BIT_INT_ARRAY)
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, 255, 255, bit_size, data_type, overflow)
          packed = values.pack(PACK_8_BIT_UINT_ARRAY)
        end

      when 16
        if data_type == :INT
          values = self.check_overflow_array(values, -32768, 32767, 65535, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_16_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_16_BIT_INT_ARRAY)
            self.byte_swap_buffer!(packed, 2)
          end
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, 65535, 65535, bit_size, data_type, overflow)
          if endianness == :BIG_ENDIAN
            packed = values.pack(PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            packed = values.pack(PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY)
          end
        end

      when 32
        if data_type == :INT
          values = self.check_overflow_array(values, -2147483648, 2147483647, 4294967295, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_32_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_32_BIT_INT_ARRAY)
            self.byte_swap_buffer!(packed, 4)
          end
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, 4294967295, 4294967295, bit_size, data_type, overflow)
          if endianness == :BIG_ENDIAN
            packed = values.pack(PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            packed = values.pack(PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY)
          end
        end

      when 64
        if data_type == :INT
          values = self.check_overflow_array(values, -9223372036854775808, 9223372036854775807, 18446744073709551615, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_INT_ARRAY)
            self.byte_swap_buffer!(packed, 8)
          end
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, 18446744073709551615, 18446744073709551615, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_UINT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_UINT_ARRAY)
            self.byte_swap_buffer!(packed, 8)
          end
        end
      end

      # Adjust packed size to hold number of items written
      buffer[lower_bound..upper_bound] = adjust_packed_size(num_bytes, packed) if num_bytes > 0

    else
      ##################################
      # Handle :INT and :UINT Bitfields
      ##################################

      raise ArgumentError, "write_array does not support little endian bit fields with bit_size greater than 1-bit" if endianness == :LITTLE_ENDIAN and bit_size > 1

      num_writes.times do |index|
        self.write(values[index], bit_offset, bit_size, data_type, buffer, endianness, overflow)
        bit_offset += bit_size
      end
    end

  when :FLOAT
    ##########################
    # Handle :FLOAT data type
    ##########################

    if byte_aligned
      case bit_size
      when 32
        if endianness == :BIG_ENDIAN
          packed = values.pack(PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          packed = values.pack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY)
        end

      when 64
        if endianness == :BIG_ENDIAN
          packed = values.pack(PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          packed = values.pack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY)
        end

      else
        raise ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}"
      end

      # Adjust packed size to hold number of items written
      buffer[lower_bound..upper_bound] = adjust_packed_size(num_bytes, packed) if num_bytes > 0

    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  else
    ############################
    # Handle Unknown data types
    ############################
    raise ArgumentError, "data_type #{data_type} is not recognized"
  end # case data_type

  values
end