Class: IPAddress
- Inherits:
-
Object
- Object
- IPAddress
- Includes:
- Comparable
- Defined in:
- lib/ipaddress.rb,
lib/ipaddress/rle.rb,
lib/ipaddress/ipv4.rb,
lib/ipaddress/ipv6.rb,
lib/ipaddress/prefix.rb,
lib/ipaddress/crunchy.rb,
lib/ipaddress/ip_bits.rb,
lib/ipaddress/prefix32.rb,
lib/ipaddress/prefix128.rb,
lib/ipaddress/ip_version.rb,
lib/ipaddress/ipv6_mapped.rb,
lib/ipaddress/ipv6_unspec.rb,
lib/ipaddress/ipv6_loopback.rb,
lib/ipaddress/result_crunchy_parts.rb
Defined Under Namespace
Modules: IpVersion Classes: Crunchy, IpBits, Ipv4, Ipv6, Ipv6Loopback, Ipv6Mapped, Ipv6Unspec, Last, Prefix, Prefix128, Prefix32, ResultCrunchyParts, Rle
Constant Summary collapse
- RE_MAPPED =
Parse the argument string to create a new
IPv4, IPv6 or Mapped IP object ip = IPAddress.parse "172.16.10.1/24" ip6 = IPAddress.parse "2001:db8.8:800:200c:417a/64" ip_mapped = IPAddress.parse ".ffff:172.16.10.1/128" All the object created will be instances of the correct class: ip.class # => IPAddress.IPv4 ip6.class # => IPAddress.IPv6 ip_mapped.class # => IPAddress.IPv6.Mapped
/:.+\./
- RE_IPV4 =
/\./
- RE_IPV6 =
/:/
- RE_DIGIT =
/^\d+$/
- RE_HEX_DIGIT =
/^[0-9a-fA-F]+$/
Instance Attribute Summary collapse
-
#host_address ⇒ Object
Returns the value of attribute host_address.
-
#ip_bits ⇒ Object
readonly
Returns the value of attribute ip_bits.
-
#mapped ⇒ Object
Returns the value of attribute mapped.
-
#prefix ⇒ Object
Returns the value of attribute prefix.
-
#vt_is_loopback ⇒ Object
readonly
Returns the value of attribute vt_is_loopback.
-
#vt_is_private ⇒ Object
readonly
Returns the value of attribute vt_is_private.
-
#vt_to_ipv6 ⇒ Object
readonly
Returns the value of attribute vt_to_ipv6.
Class Method Summary collapse
- .aggregate(networks) ⇒ Object
-
.is_valid(addr) ⇒ Object
Checks if the given string is a valid IP address, either IPv4 or IPv6.
- .is_valid_ipv4(addr) ⇒ Object
- .is_valid_ipv6(addr) ⇒ Object
-
.is_valid_netmask(addr) ⇒ Object
Checks if the argument is a valid IPv4 netmask expressed in dotted decimal format.
- .netmask_to_prefix(nm, bits) ⇒ Object
- .parse(str) ⇒ Object
- .parse_dec_str(str) ⇒ Object
- .parse_hex_str(str) ⇒ Object
-
.parse_ipv4_part(i) ⇒ Object
Checks if the given string is a valid IPv4 address.
- .parse_netmask_to_prefix(netmask) ⇒ Object
-
.pos_to_idx(pos, len) ⇒ Object
private helper for summarize assumes that networks is output from reduce_networks means it should be sorted lowers first and uniq.
- .split_at_slash(str) ⇒ Object
-
.split_on_colon(addr) ⇒ Object
Checks if the given string is a valid IPv6 address.
- .split_to_num(addr) ⇒ Object
- .split_to_u32(addr) ⇒ Object
-
.summarize(*networks) ⇒ Object
Summarization (or aggregation) is the process when two or more networks are taken together to check if a supernet, including all and only these networks, exists.
- .summarize_str(*netstr) ⇒ Object
- .to_ipaddress_vec(vec) ⇒ Object
- .to_network(adr, host_prefix) ⇒ Object
- .to_s_vec(vec) ⇒ Object
- .to_string_vec(vec) ⇒ Object
- .valid?(addr) ⇒ Boolean
- .valid_netmask?(addr) ⇒ Boolean
Instance Method Summary collapse
- #<=>(oth) ⇒ Object
- #add(other) ⇒ Object
-
#bits ⇒ Object
Returns the address portion of an IP in binary format, as a string containing a sequence of 0 and 1.
-
#broadcast ⇒ Object
Returns the broadcast address for the given IP.
- #change_netmask(str) ⇒ Object
-
#change_prefix(num) ⇒ Object
Set a new prefix number for the object.
- #clone ⇒ Object
- #cmp(oth) ⇒ Object
- #data ⇒ Object
- #dec ⇒ Object
- #dns_networks ⇒ Object
- #dns_parts ⇒ Object
-
#dns_rev_domains ⇒ Object
Returns the IP address in in-addr.arpa format for DNS Domain definition entries like SOA Records.
- #dns_reverse ⇒ Object
-
#each(&func) ⇒ Object
# => “10.0.0.0” # => “10.0.0.1” # => “10.0.0.2” # => “10.0.0.3” # => “10.0.0.4” # => “10.0.0.5” # => “10.0.0.6” # => “10.0.0.7”.
-
#each_host(&func) ⇒ Object
# => “10.0.0.1” # => “10.0.0.2” # => “10.0.0.3” # => “10.0.0.4” # => “10.0.0.5” # => “10.0.0.6”.
- #eq(other) ⇒ Object
-
#first ⇒ Object
Returns a new IPv4 object with the first host IP address in the range.
- #from(addr, prefix) ⇒ Object
- #gt(oth) ⇒ Object
- #gte(oth) ⇒ Object
- #inc ⇒ Object
-
#include?(oth) ⇒ Boolean
Checks whether a subnet includes the given IP address.
-
#include_all?(*oths) ⇒ Boolean
Checks whether a subnet includes all the given IPv4 objects.
- #includes(oth) ⇒ Object
- #includes_all(*oths) ⇒ Object
-
#initialize(obj) ⇒ IPAddress
constructor
A new instance of IPAddress.
- #ip_same_kind(oth) ⇒ Object
-
#ipv4? ⇒ Boolean
True if the object is an IPv4 address.
-
#ipv6? ⇒ Boolean
True if the object is an IPv6 address.
- #is_ipv4 ⇒ Object
- #is_ipv6 ⇒ Object
- #is_loopback ⇒ Object
- #is_mapped ⇒ Object
- #is_network ⇒ Object
- #is_private ⇒ Object
- #is_same_kind(oth) ⇒ Object
- #is_unspecified ⇒ Object
-
#last ⇒ Object
Like its sibling method IPv4# first, @method returns a new IPv4 object with the last host IP address in the range.
-
#loopback? ⇒ Boolean
Returns true if the address is a loopback address.
- #lt(oth) ⇒ Object
- #lte(oth) ⇒ Object
-
#mapped? ⇒ Boolean
Returns true if the address is a mapped address.
- #ne(other) ⇒ Object
- #netmask ⇒ Object
-
#network ⇒ Object
Returns a new IPv4 object with the network number for the given IP.
-
#network? ⇒ Boolean
Checks if the IP address is actually a network.
- #newprefix(num) ⇒ Object
- #parts ⇒ Object
- #parts_hex_str ⇒ Object
-
#private? ⇒ Boolean
Checks if an IPv4 address objects belongs to a private network RFC1918.
-
#size ⇒ Object
Returns the number of IP addresses included in the network.
- #split(subnets) ⇒ Object
- #sub(other) ⇒ Object
-
#subnet(subprefix) ⇒ Object
This method implements the subnetting function similar to the one described in RFC3531.
-
#sum_first_found(arr) ⇒ Object
Splits a network into different subnets.
-
#supernet(new_prefix) ⇒ Object
Returns a new IPv4 object from the supernetting of the instance network.
- #to_hex ⇒ Object
-
#to_ipv6 ⇒ Object
Return the ip address in a format compatible with the IPv6 Mapped IPv4 addresses.
- #to_s ⇒ Object
- #to_s_mapped ⇒ Object
- #to_s_uncompressed ⇒ Object
-
#to_string ⇒ Object
Returns a string with the IP address in canonical form.
- #to_string_mapped ⇒ Object
- #to_string_uncompressed ⇒ Object
-
#unspecified? ⇒ Boolean
Returns true if the address is an unspecified address.
Constructor Details
#initialize(obj) ⇒ IPAddress
Returns a new instance of IPAddress.
23 24 25 26 27 28 29 30 31 |
# File 'lib/ipaddress.rb', line 23 def initialize(obj) @ip_bits = obj[:ip_bits] @host_address = obj[:host_address] @prefix = obj[:prefix] @mapped = obj[:mapped] @vt_is_private = obj[:vt_is_private] @vt_is_loopback = obj[:vt_is_loopback] @vt_to_ipv6 = obj[:vt_to_ipv6] end |
Instance Attribute Details
#host_address ⇒ Object
Returns the value of attribute host_address.
19 20 21 |
# File 'lib/ipaddress.rb', line 19 def host_address @host_address end |
#ip_bits ⇒ Object (readonly)
Returns the value of attribute ip_bits.
19 20 21 |
# File 'lib/ipaddress.rb', line 19 def ip_bits @ip_bits end |
#mapped ⇒ Object
Returns the value of attribute mapped.
20 21 22 |
# File 'lib/ipaddress.rb', line 20 def mapped @mapped end |
#prefix ⇒ Object
Returns the value of attribute prefix.
19 20 21 |
# File 'lib/ipaddress.rb', line 19 def prefix @prefix end |
#vt_is_loopback ⇒ Object (readonly)
Returns the value of attribute vt_is_loopback.
20 21 22 |
# File 'lib/ipaddress.rb', line 20 def vt_is_loopback @vt_is_loopback end |
#vt_is_private ⇒ Object (readonly)
Returns the value of attribute vt_is_private.
20 21 22 |
# File 'lib/ipaddress.rb', line 20 def vt_is_private @vt_is_private end |
#vt_to_ipv6 ⇒ Object (readonly)
Returns the value of attribute vt_to_ipv6.
20 21 22 |
# File 'lib/ipaddress.rb', line 20 def vt_to_ipv6 @vt_to_ipv6 end |
Class Method Details
.aggregate(networks) ⇒ Object
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# File 'lib/ipaddress.rb', line 390 def self.aggregate(networks) if (networks.length == 0) return [] end if (networks.length == 1) # console.log("aggregate:", networks[0], networks[0].network()) return [networks[0].network()] end stack = networks.map{|i| i.network()}.sort{|a, b| a.cmp(b) } # console.log(IPAddress.to_string_vec(stack)) # for i in 0..networks.length { # println!("{}==={}", &networks[i].to_string_uncompressed(), # &stack[i].to_string_uncompressed()) # } pos = 0 while true if (pos < 0) pos = 0 end stack_len = stack.length # borrow checker # println!("loop:{}:{}", pos, stack_len) # if stack_len == 1 { # println!("exit 1") # break # } if (pos >= stack_len) # println!("exit first:{}:{}", stack_len, pos) break end first = IPAddress.pos_to_idx(pos, stack_len) pos = pos + 1 if (pos >= stack_len) # println!("exit second:{}:{}", stack_len, pos) break end second = IPAddress.pos_to_idx(pos, stack_len) pos = pos + 1 # firstUnwrap = first if (stack[first].includes(stack[second])) pos = pos - 2 # println!("remove:1:{}:{}:{}=>{}", first, second, stack_len, pos + 1) pidx = IPAddress.pos_to_idx(pos + 1, stack_len) stack.delete_at(pidx) else stack[first].prefix = stack[first].prefix.sub(1) # println!("complex:{}:{}:{}:{}:P1:{}:P2:{}", pos, stack_len, # first, second, # stack[first].to_string(), stack[second].to_string()) if ((stack[first].prefix.num + 1) == stack[second].prefix.num && stack[first].includes(stack[second])) pos = pos - 2 idx = IPAddress.pos_to_idx(pos, stack_len) stack[idx] = stack[first].clone(); # kaputt pidx = IPAddress.pos_to_idx(pos + 1, stack_len) stack.delete_at(pidx) # println!("remove-2:{}:{}", pos + 1, stack_len) pos = pos - 1; # backtrack else stack[first].prefix = stack[first].prefix.add(1); # reset prefix # println!("easy:{}:{}=>{}", pos, stack_len, stack[first].to_string()) pos = pos - 1; # do it with second as first end end end # println!("agg={}:{}", pos, stack.length) return stack.slice(0, stack.length) end |
.is_valid(addr) ⇒ Object
Checks if the given string is a valid IP address,
either IPv4 or IPv6
Example:
IPAddress.valid? "2002.1"
# => true
IPAddress.valid? "10.0.0.256"
# => false
206 207 208 |
# File 'lib/ipaddress.rb', line 206 def self.is_valid(addr) return IPAddress.is_valid_ipv4(addr) || IPAddress.is_valid_ipv6(addr) end |
.is_valid_ipv4(addr) ⇒ Object
293 294 295 |
# File 'lib/ipaddress.rb', line 293 def self.is_valid_ipv4(addr) return !IPAddress.split_to_u32(addr).nil? end |
.is_valid_ipv6(addr) ⇒ Object
373 374 375 |
# File 'lib/ipaddress.rb', line 373 def self.is_valid_ipv6(addr) return IPAddress.split_to_num(addr) != nil end |
.is_valid_netmask(addr) ⇒ Object
Checks if the argument is a valid IPv4 netmask
expressed in dotted decimal format.
IPAddress.valid_ipv4_netmask? "255.255.0.0"
# => true
758 759 760 |
# File 'lib/ipaddress.rb', line 758 def self.is_valid_netmask(addr) return !IPAddress.parse_netmask_to_prefix(addr).nil? end |
.netmask_to_prefix(nm, bits) ⇒ Object
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
# File 'lib/ipaddress.rb', line 766 def self.netmask_to_prefix(nm, bits) prefix = 0 addr = nm.clone() in_host_part = true # two = Crunchy.two() _ = 0 while _ < bits bit = addr.mds(2) #puts "#{nm.toString(16)} #{bit} #{_} #{in_host_part}" # console.log(">>>", bits, bit, addr, nm) if (in_host_part && bit == 0) prefix = prefix + 1 elsif (in_host_part && bit == 1) in_host_part = false elsif (!in_host_part && bit == 0) return nil end addr = addr.shr(1) _ += 1 end return bits - prefix end |
.parse(str) ⇒ Object
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# File 'lib/ipaddress.rb', line 117 def self.parse(str) if (RE_MAPPED.match(str)) # console.log("mapped:", str) return Ipv6Mapped.create(str) else if (RE_IPV4.match(str)) # puts("ipv4:", str) return Ipv4.create(str) elsif (RE_IPV6.match(str)) # console.log("ipv6:", str) return Ipv6.create(str) end end return nil end |
.parse_dec_str(str) ⇒ Object
215 216 217 218 219 220 221 222 223 224 |
# File 'lib/ipaddress.rb', line 215 def self.parse_dec_str(str) if (!RE_DIGIT.match(str)) # puts "=1 #{str}" # console.log("parse_dec_str:-1:", str) return nil end part = str.to_i return part end |
.parse_hex_str(str) ⇒ Object
227 228 229 230 231 232 233 234 |
# File 'lib/ipaddress.rb', line 227 def self.parse_hex_str(str) if (!RE_HEX_DIGIT.match(str)) return nil end part = str.to_i(16) return part end |
.parse_ipv4_part(i) ⇒ Object
Checks if the given string is a valid IPv4 address
Example:
IPAddress.valid_ipv4? "2002.1"
# => false
IPAddress.valid_ipv4? "172.16.10.1"
# => true
246 247 248 249 250 251 252 253 254 |
# File 'lib/ipaddress.rb', line 246 def self.parse_ipv4_part(i) part = IPAddress.parse_dec_str(i) # console.log("i=", i, part) if (part === nil || part >= 256) return nil end return part end |
.parse_netmask_to_prefix(netmask) ⇒ Object
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
# File 'lib/ipaddress.rb', line 791 def self.parse_netmask_to_prefix(netmask) # console.log("--1", netmask) is_number = IPAddress.parse_dec_str(netmask) if (!is_number.nil?) # console.log("--2", netmask, is_number) return is_number end my = IPAddress.parse(netmask) # console.log("--3", netmask, my) if (!my) # console.log("--4", netmask, my) return nil end # console.log("--5", netmask, my) my_ip = my return IPAddress.netmask_to_prefix(my_ip.host_address, my_ip.ip_bits.bits) end |
.pos_to_idx(pos, len) ⇒ Object
private helper for summarize
assumes that networks is output from reduce_networks
means it should be sorted lowers first and uniq
382 383 384 385 386 387 388 |
# File 'lib/ipaddress.rb', line 382 def self.pos_to_idx(pos, len) ilen = len # ret = pos % ilen rem = ((pos % ilen) + ilen) % ilen # println!("pos_to_idx:{}:{}=>{}:{}", pos, len, ret, rem) return rem end |
.split_at_slash(str) ⇒ Object
134 135 136 137 138 139 140 141 142 143 144 145 146 |
# File 'lib/ipaddress.rb', line 134 def self.split_at_slash(str) slash = str.strip().split("/") addr = "" if (slash[0]) addr += slash[0].strip() end if (slash[1]) return [addr, slash[1].strip()] else return [addr, nil] end end |
.split_on_colon(addr) ⇒ Object
Checks if the given string is a valid IPv6 address
Example:
IPAddress.valid_ipv6? "2002.1"
# => true
IPAddress.valid_ipv6? "2002.DEAD.BEEF"
# => false
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# File 'lib/ipaddress.rb', line 307 def self.split_on_colon(addr) parts = addr.strip().split(":") ip = Crunchy.zero() if (parts.length == 1 && parts[0].length == 0) return ResultCrunchyParts.new(ip, 0) end parts_len = parts.length shift = ((parts_len - 1) * 16) parts.each do |i| # println!("{}={}", addr, i) part = IPAddress.parse_hex_str(i) if (part === nil || part >= 65536) return nil end ip = ip.add(Crunchy.from_number(part).shl(shift)) shift -= 16 end return ResultCrunchyParts.new(ip, parts_len) end |
.split_to_num(addr) ⇒ Object
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# File 'lib/ipaddress.rb', line 330 def self.split_to_num(addr) # ip = 0 addr = addr.strip() pre_post = addr.split("::") if pre_post.length == 0 && addr.include?("::") pre_post << "" end if pre_post.length == 1 && addr.include?("::") pre_post << "" end #puts ">>>>split #{addr} #{pre_post}" if (pre_post.length > 2) return nil end if (pre_post.length == 2) # println!("{}=.={}", pre_post[0], pre_post[1]) pre = IPAddress.split_on_colon(pre_post[0]) if (!pre) return pre end post = IPAddress.split_on_colon(pre_post[1]) if (!post) return post end # println!("pre:{} post:{}", pre_parts, post_parts) return ResultCrunchyParts.new( pre.crunchy.shl(128 - (pre.parts * 16)).add(post.crunchy), 128 / 16) end # println!("split_to_num:no double:{}", addr) ret = IPAddress.split_on_colon(addr) if (ret == nil || ret.parts != 128 / 16) return nil end return ret end |
.split_to_u32(addr) ⇒ Object
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# File 'lib/ipaddress.rb', line 256 def self.split_to_u32(addr) ip = Crunchy.zero() shift = 24 split_addr = addr.split(".") if (split_addr.length > 4) # puts "+1" return nil end split_addr_len = split_addr.length if (split_addr_len < 4) part = IPAddress.parse_ipv4_part(split_addr[split_addr_len - 1]) if (part === nil) # puts "+2" return nil end ip = Crunchy.from_number(part) split_addr = split_addr.slice(0, split_addr_len - 1) end split_addr.each do |i| part = IPAddress.parse_ipv4_part(i) # console.log("u32-", addr, i, part) if (part === nil) # puts "+3" return nil end # println!("{}-{}", part_num, shift) ip = ip.add(Crunchy.from_number(part).shl(shift)) shift -= 8 end return ip end |
.summarize(*networks) ⇒ Object
Summarization (or aggregation) is the process when two or more
networks are taken together to check if a supernet, including all
and only these networks, exists. If it exists then @supernet
is called the summarized (or aggregated) network.
It is very important to understand that summarization can only
occur if there are no holes in the aggregated network, or, in other
words, if the given networks fill completely the address space
of the supernet. So the two rules are:
1) The aggregate network must contain +all+ the IP addresses of the
original networks
2) The aggregate network must contain +only+ the IP addresses of the
original networks
A few examples will help clarify the above. Let's consider for
instance the following two networks:
ip1 = IPAddress("172.16.10.0/24")
ip2 = IPAddress("172.16.11.0/24")
These two networks can be expressed using only one IP address
network if we change the prefix. Let Ruby do the work:
IPAddress.IPv4.summarize(ip1,ip2).to_s
# => "172.16.10.0/23"
We note how the network "172.16.10.0/23" includes all the addresses
specified in the above networks, and (more important) includes
ONLY those addresses.
If we summarized +ip1+ and +ip2+ with the following network:
"172.16.0.0/16"
we would have satisfied rule # 1 above, but not rule # 2. So "172.16.0.0/16"
is not an aggregate network for +ip1+ and +ip2+.
If it's not possible to compute a single aggregated network for all the
original networks, the method returns an array with all the aggregate
networks found. For example, the following four networks can be
aggregated in a single /22:
ip1 = IPAddress("10.0.0.1/24")
ip2 = IPAddress("10.0.1.1/24")
ip3 = IPAddress("10.0.2.1/24")
ip4 = IPAddress("10.0.3.1/24")
IPAddress.IPv4.summarize(ip1,ip2,ip3,ip4).to_string
# => "10.0.0.0/22",
But the following networks can't be summarized in a single network:
ip1 = IPAddress("10.0.1.1/24")
ip2 = IPAddress("10.0.2.1/24")
ip3 = IPAddress("10.0.3.1/24")
ip4 = IPAddress("10.0.4.1/24")
IPAddress.IPv4.summarize(ip1,ip2,ip3,ip4).map{|i| i.to_string}
# => ["10.0.1.0/24","10.0.2.0/23","10.0.4.0/24"]
Summarization (or aggregation) is the process when two or more
networks are taken together to check if a supernet, including all
and only these networks, exists. If it exists then @supernet
is called the summarized (or aggregated) network.
It is very important to understand that summarization can only
occur if there are no holes in the aggregated network, or, in other
words, if the given networks fill completely the address space
of the supernet. So the two rules are:
1) The aggregate network must contain +all+ the IP addresses of the
original networks
2) The aggregate network must contain +only+ the IP addresses of the
original networks
A few examples will help clarify the above. Let's consider for
instance the following two networks:
ip1 = IPAddress("2000:0.4/32")
ip2 = IPAddress("2000:1.6/32")
These two networks can be expressed using only one IP address
network if we change the prefix. Let Ruby do the work:
IPAddress.IPv6.summarize(ip1,ip2).to_s
# => "2000:0./31"
We note how the network "2000:0./31" includes all the addresses
specified in the above networks, and (more important) includes
ONLY those addresses.
If we summarized +ip1+ and +ip2+ with the following network:
"2000./16"
we would have satisfied rule # 1 above, but not rule # 2. So "2000./16"
is not an aggregate network for +ip1+ and +ip2+.
If it's not possible to compute a single aggregated network for all the
original networks, the method returns an array with all the aggregate
networks found. For example, the following four networks can be
aggregated in a single /22:
ip1 = IPAddress("2000:0./32")
ip2 = IPAddress("2000:1./32")
ip3 = IPAddress("2000:2./32")
ip4 = IPAddress("2000:3./32")
IPAddress.IPv6.summarize(ip1,ip2,ip3,ip4).to_string
# => ""2000:3./30",
But the following networks can't be summarized in a single network:
ip1 = IPAddress("2000:1./32")
ip2 = IPAddress("2000:2./32")
ip3 = IPAddress("2000:3./32")
ip4 = IPAddress("2000:4./32")
IPAddress.IPv4.summarize(ip1,ip2,ip3,ip4).map{|i| i.to_string}
# => ["2000:1./32","2000:2./31","2000:4./32"]
680 681 682 |
# File 'lib/ipaddress.rb', line 680 def self.summarize(*networks) return IPAddress.aggregate(networks.flatten) end |
.summarize_str(*netstr) ⇒ Object
684 685 686 687 688 689 690 691 692 |
# File 'lib/ipaddress.rb', line 684 def self.summarize_str(*netstr) vec = IPAddress.to_ipaddress_vec(netstr.flatten) # console.log(netstr, vec) if (!vec) return vec end return IPAddress.aggregate(vec) end |
.to_ipaddress_vec(vec) ⇒ Object
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 |
# File 'lib/ipaddress.rb', line 1003 def self.to_ipaddress_vec(vec) ret = [] vec.each do |ipstr| ipa = IPAddress.parse(ipstr) if (!ipa) # puts "#{ipstr} failed" return nil end ret.push(ipa) end return ret end |
.to_network(adr, host_prefix) ⇒ Object
969 970 971 |
# File 'lib/ipaddress.rb', line 969 def self.to_network(adr, host_prefix) return adr.shr(host_prefix).shl(host_prefix) end |
.to_s_vec(vec) ⇒ Object
985 986 987 988 989 990 991 992 |
# File 'lib/ipaddress.rb', line 985 def self.to_s_vec(vec) ret = [] vec.each do |i| ret.push(i.to_s()) end return ret end |
.to_string_vec(vec) ⇒ Object
994 995 996 997 998 999 1000 1001 |
# File 'lib/ipaddress.rb', line 994 def self.to_string_vec(vec) ret = [] vec.each do |i| ret.push(i.to_string()) end return ret end |
.valid?(addr) ⇒ Boolean
210 211 212 |
# File 'lib/ipaddress.rb', line 210 def self.valid?(addr) is_valid(addr) end |
.valid_netmask?(addr) ⇒ Boolean
762 763 764 |
# File 'lib/ipaddress.rb', line 762 def self.valid_netmask?(addr) is_valid_netmask(addr) end |
Instance Method Details
#<=>(oth) ⇒ Object
66 67 68 |
# File 'lib/ipaddress.rb', line 66 def <=>(oth) cmp(oth) end |
#add(other) ⇒ Object
981 982 983 |
# File 'lib/ipaddress.rb', line 981 def add(other) return IPAddress.aggregate([self, other]) end |
#bits ⇒ Object
Returns the address portion of an IP in binary format,
as a string containing a sequence of 0 and 1
ip = IPAddress("127.0.0.1")
ip.bits
# => "01111111000000000000000000000001"
903 904 905 906 907 908 909 910 911 912 913 914 |
# File 'lib/ipaddress.rb', line 903 def bits() num = @host_address.toString(2) ret = "" _ = num.length while _ < @ip_bits.bits ret += "0" _ += 1 end ret += num return ret end |
#broadcast ⇒ Object
Returns the broadcast address for the given IP.
ip = IPAddress("172.16.10.64/24")
ip.broadcast.to_s
# => "172.16.10.255"
931 932 933 934 |
# File 'lib/ipaddress.rb', line 931 def broadcast() return from(network().host_address.add(size().sub(Crunchy.one())), @prefix) # IPv4.parse_u32(@broadcast_u32, @prefix) end |
#change_netmask(str) ⇒ Object
837 838 839 840 841 842 843 844 |
# File 'lib/ipaddress.rb', line 837 def change_netmask(str) nm = IPAddress.parse_netmask_to_prefix(str) if (!nm) return nil end return change_prefix(nm) end |
#change_prefix(num) ⇒ Object
Set a new prefix number for the object
This is useful if you want to change the prefix
to an object created with IPv4.parse_u32 or
if the object was created using the classful
mask.
ip = IPAddress("172.16.100.4")
puts ip
# => 172.16.100.4/16
ip.prefix = 22
puts ip
# => 172.16.100.4/22
828 829 830 831 832 833 834 835 |
# File 'lib/ipaddress.rb', line 828 def change_prefix(num) prefix = @prefix.from(num) if (!prefix) return nil end return from(@host_address, prefix) end |
#clone ⇒ Object
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# File 'lib/ipaddress.rb', line 33 def clone() mapped = nil if (@mapped) mapped = @mapped.clone() end return IPAddress.new({ ip_bits: @ip_bits.clone(), host_address: @host_address.clone(), prefix: @prefix.clone(), mapped: mapped, vt_is_private: @vt_is_private, vt_is_loopback: @vt_is_loopback, vt_to_ipv6: @vt_to_ipv6 }) end |
#cmp(oth) ⇒ Object
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/ipaddress.rb', line 70 def cmp(oth) if (@ip_bits.version != oth.ip_bits.version) if (@ip_bits.version == IpVersion::V6) return 1 end return -1 end hostCmp = @host_address.compare(oth.host_address) if (hostCmp != 0) return hostCmp end return @prefix.cmp(oth.prefix) end |
#data ⇒ Object
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 |
# File 'lib/ipaddress.rb', line 1436 def data vec = [] my = host_address part_mod = Crunchy.one().shl(8) i = 0 while i < self.ip_bits.bits vec.push(my.mod(part_mod).num) my = my.shr(8) i = i + 8 end return vec.reverse().pack("c*") end |
#dec ⇒ Object
1099 1100 1101 1102 1103 1104 1105 1106 1107 |
# File 'lib/ipaddress.rb', line 1099 def dec() ret = clone() ret.host_address = ret.host_address.sub(Crunchy.one()) if (ret.gte(first())) return ret end return nil end |
#dns_networks ⇒ Object
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
# File 'lib/ipaddress.rb', line 527 def dns_networks() # +@ip_bits.dns_bits-1 next_bit_mask = @ip_bits.bits - ((~~((@prefix.host_prefix()) / @ip_bits.dns_bits)) * @ip_bits.dns_bits) # console.log("dns_networks-1", @to_string(), @prefix.host_prefix();j # @ip_bits.dns_bits, next_bit_mask); if (next_bit_mask <= 0) return [network()] end # println!("dns_networks:{}:{}", @to_string(), next_bit_mask) # dns_bits step_bit_net = Crunchy.one().shl(@ip_bits.bits - next_bit_mask) if (step_bit_net.eq(Crunchy.zero())) # console.log("dns_networks-2", @to_string()); return [network()] end ret = [] step = network().host_address prefix = @prefix.from(next_bit_mask) while (step.lte(broadcast().host_address)) # console.log("dns_networks-3", @to_string(), step.toString(), next_bit_mask, step_bit_net.toString()); ret.push(from(step, prefix)) step = step.add(step_bit_net) end return ret end |
#dns_parts ⇒ Object
514 515 516 517 518 519 520 521 522 523 524 525 |
# File 'lib/ipaddress.rb', line 514 def dns_parts() ret = [] num = @host_address.clone() mask = Crunchy.one().shl(@ip_bits.dns_bits) (@ip_bits.bits / @ip_bits.dns_bits).times do part = num.clone().mod(mask).num num = num.shr(@ip_bits.dns_bits) ret.push(part) end return ret end |
#dns_rev_domains ⇒ Object
Returns the IP address in in-addr.arpa format
for DNS Domain definition entries like SOA Records
ip = IPAddress("172.17.100.50/15")
ip.dns_rev_domains
# => ["16.172.in-addr.arpa","17.172.in-addr.arpa"]
486 487 488 489 490 491 492 493 494 |
# File 'lib/ipaddress.rb', line 486 def dns_rev_domains() ret = [] dns_networks().each do |net| # console.log("dns_rev_domains:", @to_string(), net.to_string()) ret.push(net.dns_reverse()) end return ret end |
#dns_reverse ⇒ Object
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
# File 'lib/ipaddress.rb', line 496 def dns_reverse() ret = "" dot = "" dns_parts = dns_parts() i = ((@prefix.host_prefix() + (@ip_bits.dns_bits - 1)) / @ip_bits.dns_bits) while i < dns_parts().length # console.log("dns_r", i); ret += dot ret += @ip_bits.dns_part_format(dns_parts[i]) dot = "." i += 1 end ret += dot ret += @ip_bits.rev_domain return ret end |
#each(&func) ⇒ Object
# => “10.0.0.0”
# => "10.0.0.1"
# => "10.0.0.2"
# => "10.0.0.3"
# => "10.0.0.4"
# => "10.0.0.5"
# => "10.0.0.6"
# => "10.0.0.7"
1130 1131 1132 1133 1134 1135 1136 |
# File 'lib/ipaddress.rb', line 1130 def each(&func) i = network().host_address while (i.num <= broadcast().host_address.num) func.call(from(i, @prefix)) i = i.add(Crunchy.one()) end end |
#each_host(&func) ⇒ Object
# => “10.0.0.1”
# => "10.0.0.2"
# => "10.0.0.3"
# => "10.0.0.4"
# => "10.0.0.5"
# => "10.0.0.6"
1081 1082 1083 1084 1085 1086 1087 |
# File 'lib/ipaddress.rb', line 1081 def each_host(&func) i = first().host_address while (i.lte(last().host_address)) func.call(from(i, @prefix)) i = i.add(Crunchy.one()) end end |
#eq(other) ⇒ Object
87 88 89 90 91 |
# File 'lib/ipaddress.rb', line 87 def eq(other) return @ip_bits.version == other.ip_bits.version && @prefix.eq(other.prefix) && @host_address.eq(other.host_address) end |
#first ⇒ Object
Returns a new IPv4 object with the
first host IP address in the range.
Example: given the 192.168.100.0/24 network, the first
host IP address is 192.168.100.1.
ip = IPAddress("192.168.100.0/24")
ip.first.to_s
# => "192.168.100.1"
The object IP doesn't need to be a network: the method
automatically gets the network number from it
ip = IPAddress("192.168.100.50/24")
ip.first.to_s
# => "192.168.100.1"
1037 1038 1039 |
# File 'lib/ipaddress.rb', line 1037 def first() return from(network().host_address.add(@ip_bits.host_ofs), @prefix) end |
#from(addr, prefix) ⇒ Object
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# File 'lib/ipaddress.rb', line 148 def from(addr, prefix) mapped = nil if (@mapped) mapped = @mapped.clone() end return IPAddress.new({ ip_bits: @ip_bits, host_address: addr.clone(), prefix: prefix.clone(), mapped: mapped, vt_is_private: @vt_is_private, vt_is_loopback: @vt_is_loopback, vt_to_ipv6: @vt_to_ipv6 }) end |
#gt(oth) ⇒ Object
58 59 60 |
# File 'lib/ipaddress.rb', line 58 def gt(oth) return cmp(oth) == 1 end |
#gte(oth) ⇒ Object
62 63 64 |
# File 'lib/ipaddress.rb', line 62 def gte(oth) return cmp(oth) >= 0 end |
#inc ⇒ Object
1089 1090 1091 1092 1093 1094 1095 1096 1097 |
# File 'lib/ipaddress.rb', line 1089 def inc() ret = clone() ret.host_address = ret.host_address.add(Crunchy.one()) if (ret.lte(last())) return ret end return nil end |
#include?(oth) ⇒ Boolean
1202 1203 1204 |
# File 'lib/ipaddress.rb', line 1202 def include?(oth) includes(oth) end |
#include_all?(*oths) ⇒ Boolean
1225 1226 1227 |
# File 'lib/ipaddress.rb', line 1225 def include_all?(*oths) includes_all(oths) end |
#includes(oth) ⇒ Object
1206 1207 1208 1209 1210 1211 1212 |
# File 'lib/ipaddress.rb', line 1206 def includes(oth) ret = is_same_kind(oth) && @prefix.num <= oth.prefix.num && network().host_address.eq(IPAddress.to_network(oth.host_address, @prefix.host_prefix())) # println!("includes:{}=={}=>{}", @to_string(), oth.to_string(), ret) return ret end |
#includes_all(*oths) ⇒ Object
1229 1230 1231 1232 1233 1234 1235 1236 1237 |
# File 'lib/ipaddress.rb', line 1229 def includes_all(*oths) oths.flatten.each do |oth| if (!includes(oth)) return false end end return true end |
#ip_same_kind(oth) ⇒ Object
694 695 696 |
# File 'lib/ipaddress.rb', line 694 def ip_same_kind(oth) return @ip_bits.version == oth.ip_bits.version end |
#ipv4? ⇒ Boolean
True if the object is an IPv4 address
ip = IPAddress("192.168.10.100/24")
ip.ipv4?
# -> true
172 173 174 |
# File 'lib/ipaddress.rb', line 172 def ipv4? is_ipv4 end |
#ipv6? ⇒ Boolean
True if the object is an IPv6 address
ip = IPAddress("192.168.10.100/24")
ip.ipv6?
# -> false
187 188 189 |
# File 'lib/ipaddress.rb', line 187 def ipv6? is_ipv6 end |
#is_ipv4 ⇒ Object
176 177 178 |
# File 'lib/ipaddress.rb', line 176 def is_ipv4() return @ip_bits.version == IpVersion::V4 end |
#is_ipv6 ⇒ Object
191 192 193 |
# File 'lib/ipaddress.rb', line 191 def is_ipv6() return @ip_bits.version == IpVersion::V6 end |
#is_loopback ⇒ Object
718 719 720 |
# File 'lib/ipaddress.rb', line 718 def is_loopback() return (@vt_is_loopback).call(self) end |
#is_mapped ⇒ Object
730 731 732 733 734 |
# File 'lib/ipaddress.rb', line 730 def is_mapped() ret = !@mapped.nil? && @host_address.shr(32).eq(Crunchy.one().shl(16).sub(Crunchy.one())) return ret end |
#is_network ⇒ Object
952 953 954 955 |
# File 'lib/ipaddress.rb', line 952 def is_network() return @prefix.num != @ip_bits.bits && @host_address.eq(network().host_address) end |
#is_private ⇒ Object
1252 1253 1254 |
# File 'lib/ipaddress.rb', line 1252 def is_private() return @vt_is_private.call(self) end |
#is_same_kind(oth) ⇒ Object
1183 1184 1185 1186 |
# File 'lib/ipaddress.rb', line 1183 def is_same_kind(oth) return is_ipv4() == oth.is_ipv4() && is_ipv6() == oth.is_ipv6() end |
#is_unspecified ⇒ Object
706 707 708 |
# File 'lib/ipaddress.rb', line 706 def is_unspecified() return @host_address.eq(Crunchy.zero()) end |
#last ⇒ Object
Like its sibling method IPv4# first, @method
returns a new IPv4 object with the
last host IP address in the range.
Example: given the 192.168.100.0/24 network, the last
host IP address is 192.168.100.254
ip = IPAddress("192.168.100.0/24")
ip.last.to_s
# => "192.168.100.254"
The object IP doesn't need to be a network: the method
automatically gets the network number from it
ip = IPAddress("192.168.100.50/24")
ip.last.to_s
# => "192.168.100.254"
1061 1062 1063 |
# File 'lib/ipaddress.rb', line 1061 def last() return from(broadcast().host_address.sub(@ip_bits.host_ofs), @prefix) end |
#loopback? ⇒ Boolean
Returns true if the address is a loopback address
See IPAddress.IPv6.Loopback for more information
714 715 716 |
# File 'lib/ipaddress.rb', line 714 def loopback? is_loopback end |
#lt(oth) ⇒ Object
50 51 52 |
# File 'lib/ipaddress.rb', line 50 def lt(oth) return cmp(oth) == -1 end |
#lte(oth) ⇒ Object
54 55 56 |
# File 'lib/ipaddress.rb', line 54 def lte(oth) return cmp(oth) <= 0 end |
#mapped? ⇒ Boolean
Returns true if the address is a mapped address
See IPAddress.IPv6.Mapped for more information
726 727 728 |
# File 'lib/ipaddress.rb', line 726 def mapped? is_mapped end |
#ne(other) ⇒ Object
93 94 95 |
# File 'lib/ipaddress.rb', line 93 def ne(other) return !eq(other) end |
#netmask ⇒ Object
920 921 922 |
# File 'lib/ipaddress.rb', line 920 def netmask() return from(@prefix.netmask(), @prefix) end |
#network ⇒ Object
Returns a new IPv4 object with the network number
for the given IP.
ip = IPAddress("172.16.10.64/24")
ip.network.to_s
# => "172.16.10.0"
965 966 967 |
# File 'lib/ipaddress.rb', line 965 def network() return from(IPAddress.to_network(@host_address, @prefix.host_prefix()), @prefix) end |
#network? ⇒ Boolean
948 949 950 |
# File 'lib/ipaddress.rb', line 948 def network? is_network end |
#newprefix(num) ⇒ Object
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 |
# File 'lib/ipaddress.rb', line 1422 def newprefix(num) i = num while i < @ip_bits.bits a = Math.log2(i).to_i if (a == Math.log2(i)) return @prefix.add(a) end i += 1 end return nil end |
#parts ⇒ Object
464 465 466 |
# File 'lib/ipaddress.rb', line 464 def parts() return @ip_bits.parts(@host_address) end |
#parts_hex_str ⇒ Object
468 469 470 471 472 473 474 475 476 |
# File 'lib/ipaddress.rb', line 468 def parts_hex_str() ret = [] leading = 1 << @ip_bits.part_bits self.parts().each do |i| ret.push((leading + i).toString(16).slice(1)) end return ret end |
#private? ⇒ Boolean
Checks if an IPv4 address objects belongs
to a private network RFC1918
Example:
ip = IPAddress "10.1.1.1/24"
ip.private?
# => true
1248 1249 1250 |
# File 'lib/ipaddress.rb', line 1248 def private? is_private end |
#size ⇒ Object
Returns the number of IP addresses included
in the network. It also counts the network
address and the broadcast address.
ip = IPAddress("10.0.0.1/29")
ip.size
# => 8
1179 1180 1181 |
# File 'lib/ipaddress.rb', line 1179 def size() return Crunchy.one().shl(@prefix.host_prefix()) end |
#split(subnets) ⇒ Object
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 |
# File 'lib/ipaddress.rb', line 1310 def split(subnets) if (subnets == 0 || (1 << @prefix.host_prefix()) <= subnets) return nil end networks = subnet(newprefix(subnets).num) if (!networks) return networks end net = networks while (net.length != subnets) net = sum_first_found(net) end return net end |
#sub(other) ⇒ Object
973 974 975 976 977 978 979 |
# File 'lib/ipaddress.rb', line 973 def sub(other) if (@host_address.gt(other.host_address)) return @host_address.clone().sub(other.host_address) end return other.host_address.clone().sub(@host_address) end |
#subnet(subprefix) ⇒ Object
This method implements the subnetting function
similar to the one described in RFC3531.
By specifying a new prefix, the method calculates
the network number for the given IPv4 object
and calculates the subnets associated to the new
prefix.
For example, given the following network:
ip = IPAddress "172.16.10.0/24"
we can calculate the subnets with a /26 prefix
ip.subnets(26).map(:to_string)
# => ["172.16.10.0/26", "172.16.10.64/26",
"172.16.10.128/26", "172.16.10.192/26"]
The resulting number of subnets will of course always be
a power of two.
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 |
# File 'lib/ipaddress.rb', line 1390 def subnet(subprefix) if (subprefix < @prefix.num || @ip_bits.bits < subprefix) return nil end ret = [] net = network() net.prefix = net.prefix.from(subprefix) (1 << (subprefix - @prefix.num)).times do ret.push(net.clone()) net = net.from(net.host_address, net.prefix) size = net.size() net.host_address = net.host_address.add(size) end return ret end |
#sum_first_found(arr) ⇒ Object
Splits a network into different subnets
If the IP Address is a network, it can be divided into
multiple networks. If +self+ is not a network, this
method will calculate the network from the IP and then
subnet it.
If +subnets+ is an power of two number, the resulting
networks will be divided evenly from the supernet.
network = IPAddress("172.16.10.0/24")
network / 4 # implies map{|i| i.to_string}
# => ["172.16.10.0/26",
"172.16.10.64/26",
"172.16.10.128/26",
"172.16.10.192/26"]
If +num+ is any other number, the supernet will be
divided into some networks with a even number of hosts and
other networks with the remaining addresses.
network = IPAddress("172.16.10.0/24")
network / 3 # implies map{|i| i.to_string}
# => ["172.16.10.0/26",
"172.16.10.64/26",
"172.16.10.128/25"]
Returns an array of IPv4 objects
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
# File 'lib/ipaddress.rb', line 1287 def sum_first_found(arr) dup = arr.clone() if (dup.length < 2) return dup end i = dup.length - 2 while i >= 0 # console.log("sum_first_found:", dup[i], dup[i + 1]) a = IPAddress.summarize([dup[i], dup[i + 1]]) # println!("dup:{}:{}:{}", dup.length, i, a.length) if (a.length == 1) dup[i] = a[0] dup.delete_at(i + 1) break end i -= 1 end return dup end |
#supernet(new_prefix) ⇒ Object
Returns a new IPv4 object from the supernetting
of the instance network.
Supernetting is similar to subnetting, except
that you getting as a result a network with a
smaller prefix (bigger host space). For example,
given the network
ip = IPAddress("172.16.10.0/24")
you can supernet it with a new /23 prefix
ip.supernet(23).to_string
# => "172.16.10.0/23"
However if you supernet it with a /22 prefix, the
network address will change:
ip.supernet(22).to_string
# => "172.16.8.0/22"
If +new_prefix+ is less than 1, returns 0.0.0.0/0
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 |
# File 'lib/ipaddress.rb', line 1353 def supernet(new_prefix) if (new_prefix >= @prefix.num) return nil end if new_prefix < 0 new_prefix = 0 end # new_ip = @host_address.clone() # for _ in [email protected] { # new_ip = new_ip << 1 # } return from(@host_address, @prefix.from(new_prefix)).network() end |
#to_hex ⇒ Object
916 917 918 |
# File 'lib/ipaddress.rb', line 916 def to_hex() return @host_address.toString(16) end |
#to_ipv6 ⇒ Object
Return the ip address in a format compatible
with the IPv6 Mapped IPv4 addresses
Example:
ip = IPAddress("172.16.10.1/24")
ip.to_ipv6
# => "ac10:0a01"
1418 1419 1420 |
# File 'lib/ipaddress.rb', line 1418 def to_ipv6() return @vt_to_ipv6.call(self) end |
#to_s ⇒ Object
862 863 864 |
# File 'lib/ipaddress.rb', line 862 def to_s() return @ip_bits.as_compressed_string(@host_address) end |
#to_s_mapped ⇒ Object
878 879 880 881 882 883 884 |
# File 'lib/ipaddress.rb', line 878 def to_s_mapped() if (is_mapped()) return "::ffff:#{@mapped.to_s()}" end return to_s() end |
#to_s_uncompressed ⇒ Object
874 875 876 |
# File 'lib/ipaddress.rb', line 874 def to_s_uncompressed() return @ip_bits.as_uncompressed_string(@host_address) end |
#to_string ⇒ Object
Returns a string with the IP address in canonical
form.
ip = IPAddress("172.16.100.4/22")
ip.to_string
# => "172.16.100.4/22"
854 855 856 857 858 859 860 |
# File 'lib/ipaddress.rb', line 854 def to_string() ret = "" ret += to_s() ret += "/" ret += @prefix.to_s() return ret end |
#to_string_mapped ⇒ Object
886 887 888 889 890 891 892 893 |
# File 'lib/ipaddress.rb', line 886 def to_string_mapped() if (is_mapped()) mapped = @mapped.clone() return "#{to_s_mapped()}/#{mapped.prefix.num}" end return to_string() end |
#to_string_uncompressed ⇒ Object
866 867 868 869 870 871 872 |
# File 'lib/ipaddress.rb', line 866 def to_string_uncompressed() ret = "" ret += to_s_uncompressed() ret += "/" ret += @prefix.to_s() return ret end |
#unspecified? ⇒ Boolean
Returns true if the address is an unspecified address
See IPAddress.IPv6.Unspecified for more information
702 703 704 |
# File 'lib/ipaddress.rb', line 702 def unspecified? is_unspecified end |