Module: CompSci::Fit
- Defined in:
- lib/compsci/fit.rb
Class Method Summary collapse
-
.constant(xs, ys) ⇒ Object
Fits the functional form: a (+ 0x).
-
.error(xys, &blk) ⇒ Object
Takes an array of x/y pairs and calculates the general R^2 value to measure fit against a predictive function, which is the block supplied to error:.
-
.exponential(xs, ys) ⇒ Object
To fit a functional form: y = ae^(bx).
-
.linear(xs, ys) ⇒ Object
Fits the functional form: a + bx.
-
.logarithmic(xs, ys) ⇒ Object
To fit a functional form: y = a + b*ln(x).
-
.power(xs, ys) ⇒ Object
To fit a functional form: y = ax^b.
-
.sigma(enum, &block) ⇒ Object
Enumerates over
enummappingblockif given, returning the sum of the result.
Class Method Details
.constant(xs, ys) ⇒ Object
Fits the functional form: a (+ 0x)
Takes x and y values and returns [a, variance]
44 45 46 47 48 49 |
# File 'lib/compsci/fit.rb', line 44 def self.constant xs, ys # written by Rick = sigma(ys) / ys.size.to_f variance = sigma(ys) { |y| (y - ) ** 2 } [, variance] end |
.error(xys, &blk) ⇒ Object
Takes an array of x/y pairs and calculates the general R^2 value to measure fit against a predictive function, which is the block supplied to error:
e.g. error(xys) { |x| 5 + 2 * x }
30 31 32 33 34 35 36 |
# File 'lib/compsci/fit.rb', line 30 def self.error xys, &blk = sigma(xys) { |_, y| y } / xys.size.to_f ss_tot = sigma(xys) { |_, y| (y - ) ** 2 } ss_res = sigma(xys) { |x, y| (yield(x) - y) ** 2 } 1 - (ss_res / ss_tot) end |
.exponential(xs, ys) ⇒ Object
To fit a functional form: y = ae^(bx).
Takes x and y values and returns [a, b, r^2].
See: mathworld.wolfram.com/LeastSquaresFittingExponential.html
102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# File 'lib/compsci/fit.rb', line 102 def self.exponential xs, ys n = xs.size xys = xs.zip(ys) sxlny = sigma(xys) { |x, y| x * Math.log(y) } slny = sigma(xys) { |_, y| Math.log(y) } sx2 = sigma(xys) { |x, _| x * x } sx = sigma xs c = n * sx2 - sx ** 2 a = (slny * sx2 - sx * sxlny) / c b = ( n * sxlny - sx * slny ) / c return Math.exp(a), b, self.error(xys) { |x| Math.exp(a + b * x) } end |
.linear(xs, ys) ⇒ Object
Fits the functional form: a + bx.
Takes x and y values and returns [a, b, r^2].
80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# File 'lib/compsci/fit.rb', line 80 def self.linear xs, ys n = xs.size xys = xs.zip(ys) sx = sigma xs sy = sigma ys sx2 = sigma(xs) { |x| x ** 2 } sxy = sigma(xys) { |x, y| x * y } c = n * sx2 - sx**2 a = (sy * sx2 - sx * sxy) / c b = ( n * sxy - sx * sy ) / c return a, b, self.error(xys) { |x| a + b * x } end |
.logarithmic(xs, ys) ⇒ Object
To fit a functional form: y = a + b*ln(x).
Takes x and y values and returns [a, b, r^2].
See: mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# File 'lib/compsci/fit.rb', line 58 def self.logarithmic xs, ys n = xs.size xys = xs.zip(ys) slnx2 = sigma(xys) { |x, _| Math.log(x) ** 2 } slnx = sigma(xys) { |x, _| Math.log(x) } sylnx = sigma(xys) { |x, y| y * Math.log(x) } sy = sigma(xys) { |_, y| y } c = n * slnx2 - slnx ** 2 b = ( n * sylnx - sy * slnx ) / c a = (sy - b * slnx) / n return a, b, self.error(xys) { |x| a + b * Math.log(x) } end |
.power(xs, ys) ⇒ Object
To fit a functional form: y = ax^b.
Takes x and y values and returns [a, b, r^2].
124 125 126 127 128 129 130 131 132 133 134 135 136 |
# File 'lib/compsci/fit.rb', line 124 def self.power xs, ys n = xs.size xys = xs.zip(ys) slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) } slnx = sigma(xs) { |x | Math.log(x) } slny = sigma(ys) { | y| Math.log(y) } slnx2 = sigma(xs) { |x | Math.log(x) ** 2 } b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2) a = (slny - b * slnx) / n return Math.exp(a), b, self.error(xys) { |x| (Math.exp(a) * (x ** b)) } end |
.sigma(enum, &block) ⇒ Object
Enumerates over enum mapping block if given, returning the sum of the result. Eg:
sigma([1, 2, 3]) # => 1 + 2 + 3 => 7
sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14
15 16 17 18 |
# File 'lib/compsci/fit.rb', line 15 def self.sigma enum, &block enum = enum.map(&block) if block enum.inject { |sum, n| sum + n } end |