Class: Cmfrec::Recommender
- Inherits:
-
Object
- Object
- Cmfrec::Recommender
- Defined in:
- lib/cmfrec/recommender.rb
Instance Attribute Summary collapse
-
#global_mean ⇒ Object
readonly
Returns the value of attribute global_mean.
Instance Method Summary collapse
- #fit(train_set, user_info: nil, item_info: nil) ⇒ Object
-
#initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) ⇒ Recommender
constructor
A new instance of Recommender.
- #item_bias(item_id = nil) ⇒ Object
- #item_factors(item_id = nil) ⇒ Object
- #item_ids ⇒ Object
- #new_user_recs(data, count: 5, user_info: nil, item_ids: nil) ⇒ Object
- #predict(data) ⇒ Object
- #similar_items(item_id, count: 5) ⇒ Object (also: #item_recs)
- #similar_users(user_id, count: 5) ⇒ Object
- #user_bias(user_id = nil) ⇒ Object
- #user_factors(user_id = nil) ⇒ Object
- #user_ids ⇒ Object
- #user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
Constructor Details
#initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) ⇒ Recommender
Returns a new instance of Recommender.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
# File 'lib/cmfrec/recommender.rb', line 5 def initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) set_params( k: factors, niter: epochs, verbose: verbose, user_bias: user_bias, item_bias: item_bias, add_implicit_features: add_implicit_features ) @fit = false @user_map = {} @item_map = {} @user_info_map = {} @item_info_map = {} end |
Instance Attribute Details
#global_mean ⇒ Object (readonly)
Returns the value of attribute global_mean.
3 4 5 |
# File 'lib/cmfrec/recommender.rb', line 3 def global_mean @global_mean end |
Instance Method Details
#fit(train_set, user_info: nil, item_info: nil) ⇒ Object
22 23 24 25 |
# File 'lib/cmfrec/recommender.rb', line 22 def fit(train_set, user_info: nil, item_info: nil) reset partial_fit(train_set, user_info: user_info, item_info: item_info) end |
#item_bias(item_id = nil) ⇒ Object
108 109 110 |
# File 'lib/cmfrec/recommender.rb', line 108 def item_bias(item_id = nil) read_bias(@bias_b, item_id, @item_map) if @bias_b end |
#item_factors(item_id = nil) ⇒ Object
100 101 102 |
# File 'lib/cmfrec/recommender.rb', line 100 def item_factors(item_id = nil) read_factors(@b, [@n, @n_i].max, @k_item + @k + @k_main, item_id, @item_map) end |
#item_ids ⇒ Object
92 93 94 |
# File 'lib/cmfrec/recommender.rb', line 92 def item_ids @item_map.keys end |
#new_user_recs(data, count: 5, user_info: nil, item_ids: nil) ⇒ Object
81 82 83 84 85 86 |
# File 'lib/cmfrec/recommender.rb', line 81 def new_user_recs(data, count: 5, user_info: nil, item_ids: nil) check_fit a_vec, a_bias, rated = factors_warm(data, user_info: user_info) top_n(a_vec: a_vec, a_bias: a_bias, count: count, rated: rated, item_ids: item_ids) end |
#predict(data) ⇒ Object
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/cmfrec/recommender.rb', line 27 def predict(data) check_fit data = to_dataset(data) u = data.map { |v| @user_map[v[:user_id]] || @user_map.size } i = data.map { |v| @item_map[v[:item_id]] || @item_map.size } row = int_ptr(u) col = int_ptr(i) n_predict = data.size predicted = Fiddle::Pointer.malloc(n_predict * Fiddle::SIZEOF_DOUBLE) if @implicit check_status FFI.predict_X_old_collective_implicit( row, col, predicted, n_predict, @a, @b, @k, @k_user, @k_item, @k_main, @m, @n, @nthreads ) else check_status FFI.predict_X_old_collective_explicit( row, col, predicted, n_predict, @a, @bias_a, @b, @bias_b, @global_mean, @k, @k_user, @k_item, @k_main, @m, @n, @nthreads ) end predictions = real_array(predicted) predictions.map! { |v| v.nan? ? @global_mean : v } if @implicit predictions end |
#similar_items(item_id, count: 5) ⇒ Object Also known as: item_recs
112 113 114 115 |
# File 'lib/cmfrec/recommender.rb', line 112 def similar_items(item_id, count: 5) check_fit similar(item_id, @item_map, item_factors, count, item_index) end |
#similar_users(user_id, count: 5) ⇒ Object
118 119 120 121 |
# File 'lib/cmfrec/recommender.rb', line 118 def similar_users(user_id, count: 5) check_fit similar(user_id, @user_map, user_factors, count, user_index) end |
#user_bias(user_id = nil) ⇒ Object
104 105 106 |
# File 'lib/cmfrec/recommender.rb', line 104 def user_bias(user_id = nil) read_bias(@bias_a, user_id, @user_map) if @bias_a end |
#user_factors(user_id = nil) ⇒ Object
96 97 98 |
# File 'lib/cmfrec/recommender.rb', line 96 def user_factors(user_id = nil) read_factors(@a, [@m, @m_u].max, @k_user + @k + @k_main, user_id, @user_map) end |
#user_ids ⇒ Object
88 89 90 |
# File 'lib/cmfrec/recommender.rb', line 88 def user_ids @user_map.keys end |
#user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/cmfrec/recommender.rb', line 65 def user_recs(user_id, count: 5, item_ids: nil) check_fit user = @user_map[user_id] if user a_vec = @a[user * @k * Fiddle::SIZEOF_DOUBLE, @k * Fiddle::SIZEOF_DOUBLE] a_bias = @bias_a ? @bias_a[user * Fiddle::SIZEOF_DOUBLE, Fiddle::SIZEOF_DOUBLE].unpack1("d") : 0 # @rated[user] will be nil for recommenders saved before 0.1.5 top_n(a_vec: a_vec, a_bias: a_bias, count: count, rated: (@rated[user] || {}).keys, item_ids: item_ids) else # no items if user is unknown # TODO maybe most popular items [] end end |