Class: Cmfrec::Recommender
- Inherits:
-
Object
- Object
- Cmfrec::Recommender
- Defined in:
- lib/cmfrec/recommender.rb
Instance Attribute Summary collapse
-
#global_mean ⇒ Object
readonly
Returns the value of attribute global_mean.
Instance Method Summary collapse
- #fit(train_set, user_info: nil, item_info: nil) ⇒ Object
-
#initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) ⇒ Recommender
constructor
A new instance of Recommender.
- #item_bias ⇒ Object
- #item_factors ⇒ Object
-
#new_user_recs(data, count: 5, user_info: nil) ⇒ Object
TODO add item_ids.
- #predict(data) ⇒ Object
- #user_bias ⇒ Object
- #user_factors ⇒ Object
- #user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
Constructor Details
#initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) ⇒ Recommender
Returns a new instance of Recommender.
5 6 7 8 9 10 11 12 13 14 |
# File 'lib/cmfrec/recommender.rb', line 5 def initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) set_params( k: factors, niter: epochs, verbose: verbose, user_bias: user_bias, item_bias: item_bias, add_implicit_features: add_implicit_features ) end |
Instance Attribute Details
#global_mean ⇒ Object (readonly)
Returns the value of attribute global_mean.
3 4 5 |
# File 'lib/cmfrec/recommender.rb', line 3 def global_mean @global_mean end |
Instance Method Details
#fit(train_set, user_info: nil, item_info: nil) ⇒ Object
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# File 'lib/cmfrec/recommender.rb', line 16 def fit(train_set, user_info: nil, item_info: nil) train_set = to_dataset(train_set) @implicit = !train_set.any? { |v| v[:rating] } unless @implicit = train_set.map { |o| o[:rating] } () end check_training_set(train_set) create_maps(train_set) x_row = [] x_col = [] x_val = [] value_key = @implicit ? :value : :rating train_set.each do |v| x_row << @user_map[v[:user_id]] x_col << @item_map[v[:item_id]] x_val << (v[value_key] || 1) end @m = @user_map.size @n = @item_map.size nnz = train_set.size x_row = int_ptr(x_row) x_col = int_ptr(x_col) x = real_ptr(x_val) x_full = nil weight = nil lam_unique = nil l1_lambda = 0 l1_lam_unique = nil uu = nil ii = nil @user_info_map = {} u_row, u_col, u_sp, nnz_u, @m_u, p_ = process_info(user_info, @user_map, @user_info_map, :user_id) @item_info_map = {} i_row, i_col, i_sp, nnz_i, @n_i, q = process_info(item_info, @item_map, @item_info_map, :item_id) @precompute_for_predictions = false # initialize w/ normal distribution reset_values = true @a = Fiddle::Pointer.malloc([@m, @m_u].max * (@k_user + @k + @k_main) * Fiddle::SIZEOF_DOUBLE) @b = Fiddle::Pointer.malloc([@n, @n_i].max * (@k_item + @k + @k_main) * Fiddle::SIZEOF_DOUBLE) @c = p_ > 0 ? Fiddle::Pointer.malloc(p_ * (@k_user + @k) * Fiddle::SIZEOF_DOUBLE) : nil @d = q > 0 ? Fiddle::Pointer.malloc(q * (@k_item + @k) * Fiddle::SIZEOF_DOUBLE) : nil @bias_a = nil @bias_b = nil u_colmeans = Fiddle::Pointer.malloc(p_ * Fiddle::SIZEOF_DOUBLE) i_colmeans = Fiddle::Pointer.malloc(q * Fiddle::SIZEOF_DOUBLE) if @implicit @w_main_multiplier = 1.0 @alpha = 1.0 @adjust_weight = false # downweight? @apply_log_transf = false # different defaults @lambda_ = 1e0 @w_user = 10 @w_item = 10 @finalize_chol = false args = [ @a, @b, @c, @d, reset_values, @random_state, u_colmeans, i_colmeans, @m, @n, @k, x_row, x_col, x, nnz, @lambda_, lam_unique, l1_lambda, l1_lam_unique, uu, @m_u, p_, ii, @n_i, q, u_row, u_col, u_sp, nnz_u, i_row, i_col, i_sp, nnz_i, @na_as_zero_user, @na_as_zero_item, @k_main, @k_user, @k_item, @w_main, @w_user, @w_item, real_ptr([@w_main_multiplier]), @alpha, @adjust_weight, @apply_log_transf, @niter, @nthreads, @verbose, @handle_interrupt, @use_cg, @max_cg_steps, @finalize_chol, @nonneg, @max_cd_steps, @nonneg_c, @nonneg_d, @precompute_for_predictions, nil, #precomputedBtB, nil, #precomputedBeTBe, nil #precomputedBeTBeChol ] check_status FFI.fit_collective_implicit_als(*fiddle_args(args)) @global_mean = 0 else @bias_a = Fiddle::Pointer.malloc([@m, @m_u].max * Fiddle::SIZEOF_DOUBLE) if @user_bias @bias_b = Fiddle::Pointer.malloc([@n, @n_i].max * Fiddle::SIZEOF_DOUBLE) if @item_bias if @add_implicit_features @ai = Fiddle::Pointer.malloc([@m, @m_u].max * (@k + @k_main) * Fiddle::SIZEOF_DOUBLE) @bi = Fiddle::Pointer.malloc([@n, @n_i].max * (@k + @k_main) * Fiddle::SIZEOF_DOUBLE) else @ai = nil @bi = nil end glob_mean = Fiddle::Pointer.malloc(Fiddle::SIZEOF_DOUBLE) center = true scale_lam = false scale_lam_sideinfo = false args = [ @bias_a, @bias_b, @a, @b, @c, @d, @ai, @bi, @add_implicit_features, reset_values, @random_state, glob_mean, u_colmeans, i_colmeans, @m, @n, @k, x_row, x_col, x, nnz, x_full, weight, @user_bias, @item_bias, center, @lambda_, lam_unique, l1_lambda, l1_lam_unique, scale_lam, scale_lam_sideinfo, uu, @m_u, p_, ii, @n_i, q, u_row, u_col, u_sp, nnz_u, i_row, i_col, i_sp, nnz_i, @na_as_zero, @na_as_zero_user, @na_as_zero_item, @k_main, @k_user, @k_item, @w_main, @w_user, @w_item, @w_implicit, @niter, @nthreads, @verbose, @handle_interrupt, @use_cg, @max_cg_steps, @finalize_chol, @nonneg, @max_cd_steps, @nonneg_c, @nonneg_d, @precompute_for_predictions, @include_all_x, nil, #B_plus_bias, nil, #precomputedBtB, nil, #precomputedTransBtBinvBt, nil, #precomputedBtXbias nil, #precomputedBeTBeChol, nil, #precomputedBiTBi, nil, #precomputedTransCtCinvCt, nil #precomputedCtCw ] check_status FFI.fit_collective_explicit_als(*fiddle_args(args)) @global_mean = real_array(glob_mean).first end @u_colmeans = real_array(u_colmeans) @i_colmeans = real_array(i_colmeans) @u_colmeans_ptr = u_colmeans self end |
#item_bias ⇒ Object
270 271 272 |
# File 'lib/cmfrec/recommender.rb', line 270 def item_bias read_bias(@bias_b) if @bias_b end |
#item_factors ⇒ Object
262 263 264 |
# File 'lib/cmfrec/recommender.rb', line 262 def item_factors read_factors(@b, [@n, @n_i].max, @k_item + @k + @k_main) end |
#new_user_recs(data, count: 5, user_info: nil) ⇒ Object
TODO add item_ids
251 252 253 254 255 256 |
# File 'lib/cmfrec/recommender.rb', line 251 def new_user_recs(data, count: 5, user_info: nil) check_fit a_vec, a_bias = factors_warm(data, user_info: user_info) top_n(a_vec: a_vec, a_bias: a_bias, count: count) end |
#predict(data) ⇒ Object
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# File 'lib/cmfrec/recommender.rb', line 185 def predict(data) check_fit data = to_dataset(data) u = data.map { |v| @user_map[v[:user_id]] || @user_map.size } i = data.map { |v| @item_map[v[:item_id]] || @item_map.size } row = int_ptr(u) col = int_ptr(i) n_predict = data.size predicted = Fiddle::Pointer.malloc(n_predict * Fiddle::SIZEOF_DOUBLE) if @implicit check_status FFI.predict_X_old_collective_implicit( row, col, predicted, n_predict, @a, @b, @k, @k_user, @k_item, @k_main, @m, @n, @nthreads ) else check_status FFI.predict_X_old_collective_explicit( row, col, predicted, n_predict, @a, @bias_a, @b, @bias_b, @global_mean, @k, @k_user, @k_item, @k_main, @m, @n, @nthreads ) end predictions = real_array(predicted) predictions.map! { |v| v.nan? ? @global_mean : v } if @implicit predictions end |
#user_bias ⇒ Object
266 267 268 |
# File 'lib/cmfrec/recommender.rb', line 266 def user_bias read_bias(@bias_a) if @bias_a end |
#user_factors ⇒ Object
258 259 260 |
# File 'lib/cmfrec/recommender.rb', line 258 def user_factors read_factors(@a, [@m, @m_u].max, @k_user + @k + @k_main) end |
#user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# File 'lib/cmfrec/recommender.rb', line 223 def user_recs(user_id, count: 5, item_ids: nil) check_fit user = @user_map[user_id] if user if item_ids # remove missing ids item_ids = item_ids.select { |v| @item_map[v] } data = item_ids.map { |v| {user_id: user_id, item_id: v} } scores = predict(data) item_ids.zip(scores).map do |item_id, score| {item_id: item_id, score: score} end else a_vec = @a[user * @k * Fiddle::SIZEOF_DOUBLE, @k * Fiddle::SIZEOF_DOUBLE] a_bias = @bias_a ? @bias_a[user * Fiddle::SIZEOF_DOUBLE, Fiddle::SIZEOF_DOUBLE].unpack1("d") : 0 top_n(a_vec: a_vec, a_bias: a_bias, count: count) end else # no items if user is unknown # TODO maybe most popular items [] end end |