Module: ClimbFactor::Geom
- Defined in:
- lib/climb_factor/geometry.rb
Class Method Summary collapse
- .cartesian_to_spherical(x, yy, z, lat0, lon0) ⇒ Object
- .earth_radius(lat) ⇒ Object
- .interpolate_raster(z, x, y) ⇒ Object
- .spherical_to_cartesian(lat, lon, alt, lat0, lon0) ⇒ Object
Class Method Details
.cartesian_to_spherical(x, yy, z, lat0, lon0) ⇒ Object
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# File 'lib/climb_factor/geometry.rb', line 14 def self.cartesian_to_spherical(x,yy,z,lat0,lon0) # returns [lat,lon,altitude], in units of degrees, degrees, and meters # see Geom.spherical_to_cartesian() for description of coordinate systems used and the transformations. # Calculate a first-order approximation to the inverse of the polyconic projection: r0 = earth_radius(lat0) zz = z+r0 slat0 = Math::sin(CfMath.deg_to_rad(lat0)) clat0 = Math::cos(CfMath.deg_to_rad(lat0)) r = Math::sqrt(x*x+yy*yy+zz*zz) y = clat0*yy+slat0*zz zzz = -slat0*yy+clat0*zz lat = CfMath.rad_to_deg(Math::asin(y/r)) lon = CfMath.rad_to_deg(Math::atan2(x,zzz))+lon0 1.upto(10) { |i| # more iterations to improve the result x2,y2,z2 = spherical_to_cartesian(lat,lon,z,lat0,lon0) dx = x-x2 dy = yy-y2 break if dx.abs<1.0e-8 and dy.abs<1.0e-8 lat = lat + CfMath.rad_to_deg(dy/r0) lon = lon + CfMath.rad_to_deg(dx/(r0*clat0)) if clat0!=0.0 } return [lat,lon,z] end |
.earth_radius(lat) ⇒ Object
5 6 7 8 9 10 11 12 |
# File 'lib/climb_factor/geometry.rb', line 5 def self.earth_radius(lat) # https://en.wikipedia.org/wiki/Earth_radius#Geocentric_radius a = 6378137.0 # earth's equatorial radius, in meters b = 6356752.3 # polar radius slat = Math::sin(CfMath.deg_to_rad(lat)) clat = Math::cos(CfMath.deg_to_rad(lat)) return Math::sqrt( ((a*a*clat)**2+(b*b*slat)**2) / ((a*clat)**2+(b*slat)**2)) # radius in meters end |
.interpolate_raster(z, x, y) ⇒ Object
73 74 75 76 77 78 79 80 81 82 |
# File 'lib/climb_factor/geometry.rb', line 73 def self.interpolate_raster(z,x,y) # z = array[iy][ix] # x,y = floating point, in array-index units ix = x.to_i iy = y.to_i fx = x-ix # fractional part fy = y-iy z = CfMath.interpolate_square(fx,fy,z[iy][ix],z[iy][ix+1],z[iy+1][ix],z[iy+1][ix+1]) return z end |
.spherical_to_cartesian(lat, lon, alt, lat0, lon0) ⇒ Object
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# File 'lib/climb_factor/geometry.rb', line 38 def self.spherical_to_cartesian(lat,lon,alt,lat0,lon0) # Inputs are in degrees, except for alt, which is in meters. # Returns [x,y,z] in meters. # The "cartesian" coordinates are not actually cartesian. They're coordinates in which # (x,y) are from a polyconic projection https://en.wikipedia.org/wiki/Polyconic_projection # centered on (lat0,lon0), and z is altitude. # (In older versions of the software, z was distance from center of earth.) # Outputs are in meters. The metric for the projection is not exactly euclidean, so later # calculations that treat these as cartesian coordinates are making an approximation. The error # should be tiny on the scales we normally deal with. The important thing for our purposes is # that the gradient of z is vertical. lam = CfMath.deg_to_rad(lon) lam0 = CfMath.deg_to_rad(lon0) phi = CfMath.deg_to_rad(lat) phi0 = CfMath.deg_to_rad(lat0) cotphi = 1/Math::tan(phi) u = (lam-lam0)*Math::sin(phi) # is typically on the order of 10^-3 (half the width of a USGS topo) if u.abs<0.01 # use taylor series to avoid excessive rounding in calculation of 1-cos(u) u2 = u*u u4 = u2*u2 one_minus_cosu = 0.5*u2-(0.0416666666666667)*u4+(1.38888888888889e-3)*u2*u4-(2.48015873015873e-5)*u4*u4 # max error is about 10^-27, which is a relative error of about 10^-23 else one_minus_cosu = 1-Math::cos(u) end r0 = earth_radius(lat0) # Use initial latitude and keep r0 constant. If we let r0 vary, then we also need to figure # out the direction of the g vector in this model. x = r0*cotphi*Math::sin(u) y = r0*((phi-phi0)+cotphi*one_minus_cosu) z = alt return [x,y,z] end |