Class: Classifier::LSI
- Defined in:
- lib/classifier/lsi.rb,
lib/classifier/lsi.rb
Overview
This class implements a Latent Semantic Indexer, which can search, classify and cluster data based on underlying semantic relations. For more information on the algorithms used, please consult Wikipedia.
Class Attribute Summary collapse
-
.gsl_available ⇒ Object
Returns the value of attribute gsl_available.
Instance Attribute Summary collapse
-
#auto_rebuild ⇒ Object
Returns the value of attribute auto_rebuild.
-
#word_list ⇒ Object
readonly
Returns the value of attribute word_list.
Instance Method Summary collapse
-
#<<(item) ⇒ Object
A less flexible shorthand for add_item that assumes you are passing in a string with no categorries.
-
#add_item(item, *categories, &block) ⇒ Object
Adds an item to the index.
-
#build_index(cutoff = 0.75) ⇒ Object
This function rebuilds the index if needs_rebuild? returns true.
-
#categories_for(item) ⇒ Object
Returns the categories for a given indexed items.
-
#classify(doc, cutoff = 0.30) ⇒ Object
This function uses a voting system to categorize documents, based on the categories of other documents.
-
#classify_with_confidence(doc, cutoff = 0.30) ⇒ Object
Returns the same category as classify() but also returns a confidence value derived from the vote share that the winning category got.
-
#find_related(doc, max_nearest = 3, &block) ⇒ Object
This function takes content and finds other documents that are semantically “close”, returning an array of documents sorted from most to least relavant.
-
#highest_ranked_stems(doc, count = 3) ⇒ Object
Prototype, only works on indexed documents.
-
#highest_relative_content(max_chunks = 10) ⇒ Object
This method returns max_chunks entries, ordered by their average semantic rating.
-
#initialize(options = {}) ⇒ LSI
constructor
Create a fresh index.
-
#items ⇒ Object
Returns an array of items that are indexed.
-
#needs_rebuild? ⇒ Boolean
Returns true if the index needs to be rebuilt.
-
#proximity_array_for_content(doc) ⇒ Object
This function is the primitive that find_related and classify build upon.
-
#proximity_norms_for_content(doc) ⇒ Object
Similar to proximity_array_for_content, this function takes similar arguments and returns a similar array.
-
#remove_item(item) ⇒ Object
Removes an item from the database, if it is indexed.
-
#search(string, max_nearest = 3) ⇒ Object
This function allows for text-based search of your index.
- #vote(doc, cutoff = 0.30) ⇒ Object
Constructor Details
#initialize(options = {}) ⇒ LSI
Create a fresh index. If you want to call #build_index manually, use
Classifier::LSI.new auto_rebuild: false
58 59 60 61 62 63 64 |
# File 'lib/classifier/lsi.rb', line 58 def initialize( = {}) @auto_rebuild = true unless [:auto_rebuild] == false @word_list = WordList.new @items = {} @version = 0 @built_at_version = -1 end |
Class Attribute Details
.gsl_available ⇒ Object
Returns the value of attribute gsl_available.
14 15 16 |
# File 'lib/classifier/lsi.rb', line 14 def gsl_available @gsl_available end |
Instance Attribute Details
#auto_rebuild ⇒ Object
Returns the value of attribute auto_rebuild.
51 52 53 |
# File 'lib/classifier/lsi.rb', line 51 def auto_rebuild @auto_rebuild end |
#word_list ⇒ Object (readonly)
Returns the value of attribute word_list.
50 51 52 |
# File 'lib/classifier/lsi.rb', line 50 def word_list @word_list end |
Instance Method Details
#<<(item) ⇒ Object
A less flexible shorthand for add_item that assumes you are passing in a string with no categorries. item will be duck typed via to_s .
101 102 103 |
# File 'lib/classifier/lsi.rb', line 101 def <<(item) add_item(item) end |
#add_item(item, *categories, &block) ⇒ Object
Adds an item to the index. item is assumed to be a string, but any item may be indexed so long as it responds to #to_s or if you provide an optional block explaining how the indexer can fetch fresh string data. This optional block is passed the item, so the item may only be a reference to a URL or file name.
For example:
lsi = Classifier::LSI.new
lsi.add_item "This is just plain text"
lsi.add_item "/home/me/filename.txt" { |x| File.read x }
ar = ActiveRecordObject.find( :all )
lsi.add_item ar, *ar.categories { |x| ar.content }
89 90 91 92 93 94 |
# File 'lib/classifier/lsi.rb', line 89 def add_item(item, *categories, &block) clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash @items[item] = ContentNode.new(clean_word_hash, *categories) @version += 1 build_index if @auto_rebuild end |
#build_index(cutoff = 0.75) ⇒ Object
This function rebuilds the index if needs_rebuild? returns true. For very large document spaces, this indexing operation may take some time to complete, so it may be wise to place the operation in another thread.
As a rule, indexing will be fairly swift on modern machines until you have well over 500 documents indexed, or have an incredibly diverse vocabulary for your documents.
The optional parameter “cutoff” is a tuning parameter. When the index is built, a certain number of s-values are discarded from the system. The cutoff parameter tells the indexer how many of these values to keep. A value of 1 for cutoff means that no semantic analysis will take place, turning the LSI class into a simple vector search engine.
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# File 'lib/classifier/lsi.rb', line 147 def build_index(cutoff = 0.75) return unless needs_rebuild? make_word_list doc_list = @items.values tda = doc_list.collect { |node| node.raw_vector_with(@word_list) } if self.class.gsl_available tdm = GSL::Matrix.alloc(*tda).trans ntdm = build_reduced_matrix(tdm, cutoff) ntdm.size[1].times do |col| vec = GSL::Vector.alloc(ntdm.column(col)).row doc_list[col].lsi_vector = vec doc_list[col].lsi_norm = vec.normalize end else tdm = Matrix.rows(tda).trans ntdm = build_reduced_matrix(tdm, cutoff) ntdm.column_size.times do |col| next unless doc_list[col] column = ntdm.column(col) next unless column doc_list[col].lsi_vector = column doc_list[col].lsi_norm = column.normalize end end @built_at_version = @version end |
#categories_for(item) ⇒ Object
Returns the categories for a given indexed items. You are free to add and remove items from this as you see fit. It does not invalide an index to change its categories.
109 110 111 112 113 |
# File 'lib/classifier/lsi.rb', line 109 def categories_for(item) return [] unless @items[item] @items[item].categories end |
#classify(doc, cutoff = 0.30) ⇒ Object
This function uses a voting system to categorize documents, based on the categories of other documents. It uses the same logic as the find_related function to find related documents, then returns the most obvious category from this list.
cutoff signifies the number of documents to consider when clasifying text. A cutoff of 1 means that every document in the index votes on what category the document is in. This may not always make sense.
299 300 301 302 303 304 |
# File 'lib/classifier/lsi.rb', line 299 def classify(doc, cutoff = 0.30, &) votes = vote(doc, cutoff, &) ranking = votes.keys.sort_by { |x| votes[x] } ranking[-1] end |
#classify_with_confidence(doc, cutoff = 0.30) ⇒ Object
Returns the same category as classify() but also returns a confidence value derived from the vote share that the winning category got.
e.g. category,confidence = classify_with_confidence(doc) if confidence < 0.3
category = nil
end
See classify() for argument docs
334 335 336 337 338 339 340 341 342 343 |
# File 'lib/classifier/lsi.rb', line 334 def classify_with_confidence(doc, cutoff = 0.30, &) votes = vote(doc, cutoff, &) votes_sum = votes.values.sum return [nil, nil] if votes_sum.zero? ranking = votes.keys.sort_by { |x| votes[x] } winner = ranking[-1] vote_share = votes[winner] / votes_sum.to_f [winner, vote_share] end |
#find_related(doc, max_nearest = 3, &block) ⇒ Object
This function takes content and finds other documents that are semantically “close”, returning an array of documents sorted from most to least relavant. max_nearest specifies the number of documents to return. A value of 0 means that it returns all the indexed documents, sorted by relavence.
This is particularly useful for identifing clusters in your document space. For example you may want to identify several “What’s Related” items for weblog articles, or find paragraphs that relate to each other in an essay.
282 283 284 285 286 287 |
# File 'lib/classifier/lsi.rb', line 282 def (doc, max_nearest = 3, &block) carry = proximity_array_for_content(doc, &block).reject { |pair| pair[0] == doc } result = carry.collect { |x| x[0] } result[0..(max_nearest - 1)] end |
#highest_ranked_stems(doc, count = 3) ⇒ Object
Prototype, only works on indexed documents. I have no clue if this is going to work, but in theory it’s supposed to.
349 350 351 352 353 354 355 |
# File 'lib/classifier/lsi.rb', line 349 def highest_ranked_stems(doc, count = 3) raise 'Requested stem ranking on non-indexed content!' unless @items[doc] arr = node_for_content(doc).lsi_vector.to_a top_n = arr.sort.reverse[0..(count - 1)] top_n.collect { |x| @word_list.word_for_index(arr.index(x)) } end |
#highest_relative_content(max_chunks = 10) ⇒ Object
This method returns max_chunks entries, ordered by their average semantic rating. Essentially, the average distance of each entry from all other entries is calculated, the highest are returned.
This can be used to build a summary service, or to provide more information about your dataset’s general content. For example, if you were to use categorize on the results of this data, you could gather information on what your dataset is generally about.
192 193 194 195 196 197 198 199 |
# File 'lib/classifier/lsi.rb', line 192 def highest_relative_content(max_chunks = 10) return [] if needs_rebuild? avg_density = {} @items.each_key { |x| avg_density[x] = proximity_array_for_content(x).sum { |pair| pair[1] } } avg_density.keys.sort_by { |x| avg_density[x] }.reverse[0..(max_chunks - 1)].map end |
#items ⇒ Object
Returns an array of items that are indexed.
127 128 129 |
# File 'lib/classifier/lsi.rb', line 127 def items @items.keys end |
#needs_rebuild? ⇒ Boolean
Returns true if the index needs to be rebuilt. The index needs to be built after all informaton is added, but before you start using it for search, classification and cluster detection.
71 72 73 |
# File 'lib/classifier/lsi.rb', line 71 def needs_rebuild? (@items.keys.size > 1) && (@version != @built_at_version) end |
#proximity_array_for_content(doc) ⇒ Object
This function is the primitive that find_related and classify build upon. It returns an array of 2-element arrays. The first element of this array is a document, and the second is its “score”, defining how “close” it is to other indexed items.
These values are somewhat arbitrary, having to do with the vector space created by your content, so the magnitude is interpretable but not always meaningful between indexes.
The parameter doc is the content to compare. If that content is not indexed, you can pass an optional block to define how to create the text data. See add_item for examples of how this works.
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# File 'lib/classifier/lsi.rb', line 215 def proximity_array_for_content(doc, &) return [] if needs_rebuild? content_node = node_for_content(doc, &) result = @items.keys.collect do |item| val = if self.class.gsl_available content_node.search_vector * @items[item].search_vector.col else (Matrix[content_node.search_vector] * @items[item].search_vector)[0] end [item, val] end result.sort_by { |x| x[1] }.reverse end |
#proximity_norms_for_content(doc) ⇒ Object
Similar to proximity_array_for_content, this function takes similar arguments and returns a similar array. However, it uses the normalized calculated vectors instead of their full versions. This is useful when you’re trying to perform operations on content that is much smaller than the text you’re working with. search uses this primitive.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# File 'lib/classifier/lsi.rb', line 238 def proximity_norms_for_content(doc, &) return [] if needs_rebuild? content_node = node_for_content(doc, &) result = @items.keys.collect do |item| val = if self.class.gsl_available content_node.search_norm * @items[item].search_norm.col else (Matrix[content_node.search_norm] * @items[item].search_norm)[0] end [item, val] end result.sort_by { |x| x[1] }.reverse end |
#remove_item(item) ⇒ Object
Removes an item from the database, if it is indexed.
118 119 120 121 122 123 |
# File 'lib/classifier/lsi.rb', line 118 def remove_item(item) return unless @items.key?(item) @items.delete(item) @version += 1 end |
#search(string, max_nearest = 3) ⇒ Object
This function allows for text-based search of your index. Unlike other functions like find_related and classify, search only takes short strings. It will also ignore factors like repeated words. It is best for short, google-like search terms. A search will first priortize lexical relationships, then semantic ones.
While this may seem backwards compared to the other functions that LSI supports, it is actually the same algorithm, just applied on a smaller document.
263 264 265 266 267 268 269 |
# File 'lib/classifier/lsi.rb', line 263 def search(string, max_nearest = 3) return [] if needs_rebuild? carry = proximity_norms_for_content(string) result = carry.collect { |x| x[0] } result[0..(max_nearest - 1)] end |
#vote(doc, cutoff = 0.30) ⇒ Object
307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# File 'lib/classifier/lsi.rb', line 307 def vote(doc, cutoff = 0.30, &) icutoff = (@items.size * cutoff).round carry = proximity_array_for_content(doc, &) carry = carry[0..(icutoff - 1)] votes = {} carry.each do |pair| categories = @items[pair[0]].categories categories.each do |category| votes[category] ||= 0.0 votes[category] += pair[1] end end votes end |