Class: Classifier::Bayes

Inherits:
Object show all
Defined in:
lib/classifier/bayes.rb

Instance Method Summary collapse

Constructor Details

#initialize(*categories) ⇒ Bayes

The class can be created with one or more categories, each of which will be initialized and given a training method. E.g.,

b = Classifier::Bayes.new 'Interesting', 'Uninteresting', 'Spam'


18
19
20
21
22
23
24
# File 'lib/classifier/bayes.rb', line 18

def initialize(*categories)
  @categories = {}
  categories.each { |category| @categories[category.prepare_category_name] = {} }
  @total_words = 0
  @category_counts = Hash.new(0)
  @category_word_count = Hash.new(0)
end

Dynamic Method Handling

This class handles dynamic methods through the method_missing method

#method_missing(name, *args) ⇒ Object

Provides training and untraining methods for the categories specified in Bayes#new For example:

b = Classifier::Bayes.new 'This', 'That', 'the_other'
b.train_this "This text"
b.train_that "That text"
b.untrain_that "That text"
b.train_the_other "The other text"

Raises:

  • (StandardError)


115
116
117
118
119
120
121
122
123
# File 'lib/classifier/bayes.rb', line 115

def method_missing(name, *args)
  return super unless name.to_s =~ /(un)?train_(\w+)/

  category = name.to_s.gsub(/(un)?train_(\w+)/, '\2').prepare_category_name
  raise StandardError, "No such category: #{category}" unless @categories.key?(category)

  method = name.to_s.start_with?('untrain_') ? :untrain : :train
  args.each { |text| send(method, category, text) }
end

Instance Method Details

#add_category(category) ⇒ Object Also known as: append_category

Allows you to add categories to the classifier. For example:

b.add_category "Not spam"

WARNING: Adding categories to a trained classifier will result in an undertrained category that will tend to match more criteria than the trained selective categories. In short, try to initialize your categories at initialization.



150
151
152
# File 'lib/classifier/bayes.rb', line 150

def add_category(category)
  @categories[category.prepare_category_name] = {}
end

#categoriesObject

Provides a list of category names For example:

b.categories
=>   ['This', 'That', 'the_other']


136
137
138
# File 'lib/classifier/bayes.rb', line 136

def categories
  @categories.keys.collect(&:to_s)
end

#classifications(text) ⇒ Object

Returns the scores in each category the provided text. E.g.,

b.classifications "I hate bad words and you"
=>  {"Uninteresting"=>-12.6997928013932, "Interesting"=>-18.4206807439524}

The largest of these scores (the one closest to 0) is the one picked out by #classify



78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# File 'lib/classifier/bayes.rb', line 78

def classifications(text)
  words = text.word_hash.keys
  training_count = @category_counts.values.sum.to_f
  vocab_size = [@categories.values.flat_map(&:keys).uniq.size, 1].max

  @categories.to_h do |category, category_words|
    smoothed_total = ((@category_word_count[category] || 0) + vocab_size).to_f

    # Laplace smoothing: P(word|category) = (count + α) / (total + α * V)
    word_score = words.sum { |w| Math.log(((category_words[w] || 0) + 1) / smoothed_total) }
    prior_score = Math.log((@category_counts[category] || 0.1) / training_count)

    [category.to_s, word_score + prior_score]
  end
end

#classify(text) ⇒ Object

Returns the classification of the provided text, which is one of the categories given in the initializer. E.g.,

b.classify "I hate bad words and you"
=>  'Uninteresting'

Raises:

  • (StandardError)


100
101
102
103
104
105
# File 'lib/classifier/bayes.rb', line 100

def classify(text)
  best = classifications(text).min_by { |a| -a[1] }
  raise StandardError, 'No classifications available' unless best

  best.first.to_s
end

#remove_category(category) ⇒ Object

Allows you to remove categories from the classifier. For example:

b.remove_category "Spam"

WARNING: Removing categories from a trained classifier will result in the loss of all training data for that category. Make sure you really want to do this before calling this method.

Raises:

  • (StandardError)


165
166
167
168
169
170
171
172
173
174
# File 'lib/classifier/bayes.rb', line 165

def remove_category(category)
  category = category.prepare_category_name
  raise StandardError, "No such category: #{category}" unless @categories.key?(category)

  @total_words -= @category_word_count[category].to_i

  @categories.delete(category)
  @category_counts.delete(category)
  @category_word_count.delete(category)
end

#respond_to_missing?(name, include_private = false) ⇒ Boolean

Returns:

  • (Boolean)


126
127
128
# File 'lib/classifier/bayes.rb', line 126

def respond_to_missing?(name, include_private = false)
  !!(name.to_s =~ /(un)?train_(\w+)/) || super
end

#train(category, text) ⇒ Object

Provides a general training method for all categories specified in Bayes#new For example:

b = Classifier::Bayes.new 'This', 'That', 'the_other'
b.train :this, "This text"
b.train "that", "That text"
b.train "The other", "The other text"


34
35
36
37
38
39
40
41
42
43
# File 'lib/classifier/bayes.rb', line 34

def train(category, text)
  category = category.prepare_category_name
  @category_counts[category] += 1
  text.word_hash.each do |word, count|
    @categories[category][word] ||= 0
    @categories[category][word] += count
    @total_words += count
    @category_word_count[category] += count
  end
end

#untrain(category, text) ⇒ Object

Provides a untraining method for all categories specified in Bayes#new Be very careful with this method.

For example:

b = Classifier::Bayes.new 'This', 'That', 'the_other'
b.train :this, "This text"
b.untrain :this, "This text"


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# File 'lib/classifier/bayes.rb', line 54

def untrain(category, text)
  category = category.prepare_category_name
  @category_counts[category] -= 1
  text.word_hash.each do |word, count|
    next unless @total_words >= 0

    orig = @categories[category][word] || 0
    @categories[category][word] ||= 0
    @categories[category][word] -= count
    if @categories[category][word] <= 0
      @categories[category].delete(word)
      count = orig
    end
    @category_word_count[category] -= count if @category_word_count[category] >= count
    @total_words -= count
  end
end