Class: Cerebrum
- Inherits:
-
Object
- Object
- Cerebrum
- Includes:
- CerebrumHelper, DataScrubber
- Defined in:
- lib/cerebrum/version.rb,
lib/cerebrum/cerebrum.rb
Constant Summary collapse
- VERSION =
"0.1.3"
Instance Attribute Summary collapse
-
#binary_thresh ⇒ Object
Returns the value of attribute binary_thresh.
-
#hidden_layers ⇒ Object
Returns the value of attribute hidden_layers.
-
#input_lookup_table ⇒ Object
Returns the value of attribute input_lookup_table.
-
#learning_rate ⇒ Object
Returns the value of attribute learning_rate.
-
#momentum ⇒ Object
Returns the value of attribute momentum.
-
#output_lookup_table ⇒ Object
Returns the value of attribute output_lookup_table.
Instance Method Summary collapse
-
#initialize(learning_rate: 0.3, momentum: 0.1, binary_thresh: 0.5, hidden_layers: nil) ⇒ Cerebrum
constructor
A new instance of Cerebrum.
- #load_state(saved_state) ⇒ Object
- #run(input) ⇒ Object
- #save_state ⇒ Object
- #train(training_set, options = Hash.new) ⇒ Object
- #train_pattern(input, target, learning_rate) ⇒ Object
Constructor Details
#initialize(learning_rate: 0.3, momentum: 0.1, binary_thresh: 0.5, hidden_layers: nil) ⇒ Cerebrum
Returns a new instance of Cerebrum.
12 13 14 15 16 17 |
# File 'lib/cerebrum/cerebrum.rb', line 12 def initialize(learning_rate: 0.3, momentum: 0.1, binary_thresh: 0.5, hidden_layers: nil) @learning_rate = learning_rate @momentum = momentum @binary_thresh = binary_thresh @hidden_layers = hidden_layers end |
Instance Attribute Details
#binary_thresh ⇒ Object
Returns the value of attribute binary_thresh.
9 10 11 |
# File 'lib/cerebrum/cerebrum.rb', line 9 def binary_thresh @binary_thresh end |
#hidden_layers ⇒ Object
Returns the value of attribute hidden_layers.
9 10 11 |
# File 'lib/cerebrum/cerebrum.rb', line 9 def hidden_layers @hidden_layers end |
#input_lookup_table ⇒ Object
Returns the value of attribute input_lookup_table.
9 10 11 |
# File 'lib/cerebrum/cerebrum.rb', line 9 def input_lookup_table @input_lookup_table end |
#learning_rate ⇒ Object
Returns the value of attribute learning_rate.
9 10 11 |
# File 'lib/cerebrum/cerebrum.rb', line 9 def learning_rate @learning_rate end |
#momentum ⇒ Object
Returns the value of attribute momentum.
9 10 11 |
# File 'lib/cerebrum/cerebrum.rb', line 9 def momentum @momentum end |
#output_lookup_table ⇒ Object
Returns the value of attribute output_lookup_table.
9 10 11 |
# File 'lib/cerebrum/cerebrum.rb', line 9 def output_lookup_table @output_lookup_table end |
Instance Method Details
#load_state(saved_state) ⇒ Object
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# File 'lib/cerebrum/cerebrum.rb', line 85 def load_state(saved_state) state = JSON.parse(saved_state, symbolize_names: true) @biases = state[:biases] @binary_thresh = state[:binary_thresh] @changes = state[:changes] @deltas = state[:deltas] @errors = state[:errors] @hidden_layers = state[:hidden_layers] @input_lookup_table = state[:input_lookup_table] @layer_sizes = state[:layer_sizes] @layers = state[:layers] @learning_rate = state[:learning_rate] @momentum = state[:momentum] @output_lookup_table = state[:output_lookup_table] @outputs = state[:outputs] @weights = state[:weights] end |
#run(input) ⇒ Object
60 61 62 63 64 |
# File 'lib/cerebrum/cerebrum.rb', line 60 def run(input) input = to_vector_given_features(input, @input_lookup_table) if @input_lookup_table output = run_input(input) @output_lookup_table ? to_features_given_vector(output, @output_lookup_table) : output end |
#save_state ⇒ Object
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
# File 'lib/cerebrum/cerebrum.rb', line 66 def save_state { biases: @biases, binary_thresh: @binary_thresh, changes: @changes, deltas: @deltas, errors: @errors, hidden_layers: @hidden_layers, input_lookup_table: @input_lookup_table, layer_sizes: @layer_sizes, layers: @layers, learning_rate: @learning_rate, momentum: @momentum, output_lookup_table: @output_lookup_table, outputs: @outputs, weights: @weights }.to_json end |
#train(training_set, options = Hash.new) ⇒ Object
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/cerebrum/cerebrum.rb', line 28 def train(training_set, = Hash.new) @input_lookup_table ||= get_input_lookup_table(training_set) @output_lookup_table ||= get_output_lookup_table(training_set) training_set = scrub_dataset(training_set) iterations = [:iterations] || 20000 error_threshold = [:error_threshold] || 0.005 log = [:log] || false log_period = [:log_period] || 10 learning_rate = [:learning_rate] || 0.3 error = Float::INFINITY current_iteration = 0 input_size = training_set[0][:input].length output_size = training_set[0][:output].length @hidden_layers ||= [ [3, (input_size/2).floor].max ] layer_sizes = [input_size, @hidden_layers, output_size].flatten construct_network(layer_sizes) iterations.times do |i| current_iteration = i training_set_errors = training_set.map { |ex| train_pattern(ex[:input], ex[:output], learning_rate) } error = training_set_errors.inject(:+) / training_set.length puts "(#{i}) training error: #{error}" if (log && (i % log_period) == 0) break if error < error_threshold end { error: error, iterations: current_iteration } end |
#train_pattern(input, target, learning_rate) ⇒ Object
19 20 21 22 23 24 25 26 |
# File 'lib/cerebrum/cerebrum.rb', line 19 def train_pattern(input, target, learning_rate) learning_rate = learning_rate || @learning_rate run_input(input) calculate_deltas(target) adjust_weights(learning_rate) mean_squared_error(@errors[@layers]) end |