Class: Callidus::ExponentialRegression
- Inherits:
-
Object
- Object
- Callidus::ExponentialRegression
- Defined in:
- lib/src/ExponentialRegression.rb
Instance Attribute Summary collapse
-
#a ⇒ Object
readonly
Returns the value of attribute a.
-
#b ⇒ Object
readonly
Returns the value of attribute b.
-
#correlation ⇒ Object
readonly
Returns the value of attribute correlation.
-
#input ⇒ Object
Returns the value of attribute input.
-
#output ⇒ Object
Returns the value of attribute output.
-
#predicted_output ⇒ Object
Returns the value of attribute predicted_output.
-
#standard_error ⇒ Object
readonly
Returns the value of attribute standard_error.
Instance Method Summary collapse
- #find_standard_error ⇒ Object
- #formatted ⇒ Object
-
#initialize(ip = [], op = []) ⇒ ExponentialRegression
constructor
A new instance of ExponentialRegression.
- #predict(x) ⇒ Object
- #train ⇒ Object
Constructor Details
#initialize(ip = [], op = []) ⇒ ExponentialRegression
Returns a new instance of ExponentialRegression.
15 16 17 18 19 20 |
# File 'lib/src/ExponentialRegression.rb', line 15 def initialize(ip = [], op = []) @input = ip @output = op @trained = false end |
Instance Attribute Details
#a ⇒ Object (readonly)
Returns the value of attribute a.
9 10 11 |
# File 'lib/src/ExponentialRegression.rb', line 9 def a @a end |
#b ⇒ Object (readonly)
Returns the value of attribute b.
10 11 12 |
# File 'lib/src/ExponentialRegression.rb', line 10 def b @b end |
#correlation ⇒ Object (readonly)
Returns the value of attribute correlation.
12 13 14 |
# File 'lib/src/ExponentialRegression.rb', line 12 def correlation @correlation end |
#input ⇒ Object
Returns the value of attribute input.
5 6 7 |
# File 'lib/src/ExponentialRegression.rb', line 5 def input @input end |
#output ⇒ Object
Returns the value of attribute output.
6 7 8 |
# File 'lib/src/ExponentialRegression.rb', line 6 def output @output end |
#predicted_output ⇒ Object
Returns the value of attribute predicted_output.
7 8 9 |
# File 'lib/src/ExponentialRegression.rb', line 7 def predicted_output @predicted_output end |
#standard_error ⇒ Object (readonly)
Returns the value of attribute standard_error.
13 14 15 |
# File 'lib/src/ExponentialRegression.rb', line 13 def standard_error @standard_error end |
Instance Method Details
#find_standard_error ⇒ Object
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# File 'lib/src/ExponentialRegression.rb', line 67 def find_standard_error assert_trained() n = @input.size > @output.size ? @output.size : @input.size diffs = [] n.times do |i| diffs << (@predicted_output[i] - @output[i]) ** 2 end @standard_error = (Math.sqrt(diffs.sum/(n - 2.0))).round(3) self end |
#formatted ⇒ Object
28 29 30 31 32 |
# File 'lib/src/ExponentialRegression.rb', line 28 def formatted assert_trained() "f(x) = #{@a}e^#{@b}x" end |
#predict(x) ⇒ Object
83 84 85 86 87 |
# File 'lib/src/ExponentialRegression.rb', line 83 def predict(x) assert_trained() @a * (2.7182818284590452353602 ** (@b * x)) end |
#train ⇒ Object
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/src/ExponentialRegression.rb', line 34 def train mean_x = @input.mean mean_lny = @output.inject(0.0) { |s, n| s + Math.log(n) } / @output.size sum_xx = 0.0 sum_xy = 0.0 sum_yy = 0.0 @input.each_index do |i| sum_xx += @input[i] * @input[i] sum_xy += @input[i] * Math.log(@output[i]) sum_yy += Math.log(@output[i]) * Math.log(@output[i]) end sum_xx = (sum_xx / @input.size) - (mean_x * mean_x) sum_xy = (sum_xy / @input.size) - (mean_x * mean_lny) sum_yy = (sum_yy / @output.size) - (mean_lny * mean_lny) @b = sum_xy / sum_xx @a = 2.7182818284590452353602 ** (mean_lny - b * mean_x) @predicted_output = @input.map { |x| (@a * (2.7182818284590452353602 ** (@b * x))).round(3) } @correlation = (sum_xy / (Math.sqrt(sum_xx) * Math.sqrt(sum_yy))).round(3) @trained = true @a = @a.round(3) @b = @b.round(3) self.find_standard_error end |