Class: Brian::NeuralNetwork
- Inherits:
-
Object
- Object
- Brian::NeuralNetwork
- Defined in:
- lib/brian/hash.rb,
lib/brian/neural_network.rb
Class Method Summary collapse
- .activation_function(sum) ⇒ Object
- .mse(errors) ⇒ Object
- .new_with_hash(hash) ⇒ Object
- .random_weight ⇒ Object
Instance Method Summary collapse
- #adjust_weights ⇒ Object
- #calculate_deltas(target) ⇒ Object
- #format_data(data) ⇒ Object
-
#initialize ⇒ NeuralNetwork
constructor
A new instance of NeuralNetwork.
- #initialize_layers(sizes) ⇒ Object
- #run(input) ⇒ Object
- #run_input(input) ⇒ Object
- #to_hash ⇒ Object
- #train(data, options = {}) ⇒ Object
- #train_pattern(input, target) ⇒ Object
Constructor Details
#initialize ⇒ NeuralNetwork
Returns a new instance of NeuralNetwork.
16 17 18 19 |
# File 'lib/brian/neural_network.rb', line 16 def initialize @learning_rate = 0.3 @momentum = 0.1 end |
Class Method Details
.activation_function(sum) ⇒ Object
12 13 14 |
# File 'lib/brian/neural_network.rb', line 12 def self.activation_function(sum) 1.0 / (1.0 + Math.exp(-sum)) end |
.mse(errors) ⇒ Object
8 9 10 |
# File 'lib/brian/neural_network.rb', line 8 def self.mse(errors) errors.map {|e| e**2}.inject(:+)/errors.length end |
.new_with_hash(hash) ⇒ Object
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/brian/hash.rb', line 38 def self.new_with_hash(hash) net = NeuralNetwork.new net.instance_eval do size = hash[:layers].count @output_layer = size -1 @sizes = Array.new(size) @weights = Array.new(size) @biases = Array.new(size) @outputs = Array.new(size) hash[:layers].each_with_index do |layer, i| if i == 0 and layer[0].nil? @input_lookup = Brian::Lookup.lookup_from_hash(layer) end if i == @output_layer and layer[0].nil? @output_lookup = Brian::Lookup.lookup_from_hash(layer) end nodes = layer.keys @sizes[i] = nodes.count @weights[i] = [] @biases[i] = [] @outputs[i] = [] nodes.each_with_index do |node, j| @biases[i][j] = layer[node][:bias] @weights[i][j] = layer[node][:weights].nil? ? nil : layer[node][:weights].values end end end return net end |
.random_weight ⇒ Object
4 5 6 |
# File 'lib/brian/neural_network.rb', line 4 def self.random_weight rand()*0.4 - 0.2 end |
Instance Method Details
#adjust_weights ⇒ Object
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# File 'lib/brian/neural_network.rb', line 199 def adjust_weights @sizes.count.times do |layer| next if layer == 0 incoming = @outputs[layer-1] @sizes[layer].times do |node| delta = @deltas[layer][node] incoming.each_with_index do |i,k| change = @changes[layer][node][k] change *= @momentum change += @learning_rate * delta * i @changes[layer][node][k] = change @weights[layer][node][k] += change end @biases[layer][node] += @learning_rate * delta end end end |
#calculate_deltas(target) ⇒ Object
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# File 'lib/brian/neural_network.rb', line 177 def calculate_deltas(target) @sizes.length.times do |layer| layer = -(layer+1) @sizes[layer].times do |node| output = @outputs[layer][node] error = 0 if layer == -1 #Output layer error = (target[node] - output).to_f else deltas = @deltas[layer+1] deltas.each_with_index do |d,k| error += d * @weights[layer+1][k][node] end end @errors[layer][node] = error @deltas[layer][node] = error*output*(1.0-output) end end end |
#format_data(data) ⇒ Object
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# File 'lib/brian/neural_network.rb', line 87 def format_data(data) if not data[0][:input].is_a?(Array) if @input_lookup.nil? inputs = data.map {|d| d[:input]} @input_lookup = Brian::Lookup.build_lookup(inputs) end data.each do |d| d[:input] = Brian::Lookup.to_array(@input_lookup,d[:input]) end end if not data[0][:output].is_a?(Array) if @output_lookup.nil? inputs = data.map {|d| d[:output]} @output_lookup = Brian::Lookup.build_lookup(inputs) end data.each do |d| d[:output] = Brian::Lookup.to_array(@output_lookup,d[:output]) end end return data end |
#initialize_layers(sizes) ⇒ Object
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# File 'lib/brian/neural_network.rb', line 22 def initialize_layers(sizes) @sizes = sizes @output_layer = @sizes.length - 1 @biases = [] @weights = [] @outputs = [] @deltas = [] @changes = [] @errors = [] @sizes.length.times do |layer| size = @sizes[layer] @deltas[layer] = Array.new(size) {0} @errors[layer] = Array.new(size) {0} @outputs[layer] = Array.new(size) {0} next if layer == 0 @biases[layer] = Array.new(size) {NeuralNetwork.random_weight} @weights[layer] = Array.new(size) @changes[layer] = Array.new(size) size.times do |node| prev_size = @sizes[layer - 1] @weights[layer][node] = Array.new(prev_size) {NeuralNetwork.random_weight} @changes[layer][node] = Array.new(prev_size) {0} end end end |
#run(input) ⇒ Object
56 57 58 59 60 61 62 63 64 |
# File 'lib/brian/neural_network.rb', line 56 def run(input) input = Brian::Lookup.to_array(@input_lookup, input) if @input_lookup output = self.run_input(input) output = Brian::Lookup.to_hash(@output_lookup, output) if @output_lookup return output end |
#run_input(input) ⇒ Object
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/brian/neural_network.rb', line 66 def run_input(input) @outputs[0] = input @sizes.count.times do |layer| next if layer == 0 @sizes[layer].times do |node| weights = @weights[layer][node] sum = @biases[layer][node] weights.each_with_index {|w,k| sum += w*input[k]} @outputs[layer][node] = NeuralNetwork.activation_function(sum) end input = @outputs[layer] end return @outputs[@output_layer] end |
#to_hash ⇒ Object
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# File 'lib/brian/hash.rb', line 4 def to_hash layers = [] @sizes.count.times do |layer| layers[layer] = {} if layer == 0 and @input_lookup nodes = @input_lookup.keys elsif (layer == @output_layer) and @output_lookup nodes = @output_lookup.keys else nodes = (0..@sizes[layer]-1).to_a end nodes.each_with_index do |node,j| layers[layer][node] = {} next if layer == 0 layers[layer][node][:bias] = @biases[layer][j] layers[layer][node][:weights] = {} layers[layer-1].keys.each do |k| index = k index = @input_lookup[k] if (layer == 1) and @input_lookup layers[layer][node][:weights][k] = @weights[layer][j][index] end end end return {layers:layers} end |
#train(data, options = {}) ⇒ Object
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# File 'lib/brian/neural_network.rb', line 113 def train(data, = {}) data = self.format_data(data) = ({ iterations:20000, error_thresh:0.005, log:false, log_period:10, callback_period:10 }).merge() input_size = data[0][:input].size output_size = data[0][:output].size hidden_sizes = @hidden_sizes if hidden_sizes.nil? hidden_sizes = [[3,(input_size.to_f/2).floor].max] end sizes = [input_size,hidden_sizes,output_size].flatten self.initialize_layers(sizes) error = 1 iterations = 0 [:iterations].times do |i| sum = 0 iterations = i data.each do |d| err = self.train_pattern(d[:input],d[:output]) sum += err end error = sum/data.count if [:log] and (i % [:log_period] == 0) puts "iterations:#{i} training_error #{error}" end if [:callback] and (i % [:callback_period] == 0) [:callback].call({error:error, iterations:i}) end break if error <= [:error_thresh] end return {error:error, iterations:iterations} end |
#train_pattern(input, target) ⇒ Object
164 165 166 167 168 169 170 171 172 173 174 175 |
# File 'lib/brian/neural_network.rb', line 164 def train_pattern(input, target) #Forward propogate self.run_input(input) #Back propogate self.calculate_deltas(target) self.adjust_weights() error = Brian::NeuralNetwork.mse(@errors[@output_layer]) return error end |