Class: BlockIo::Key
- Inherits:
-
Object
- Object
- BlockIo::Key
- Defined in:
- lib/block_io.rb
Class Method Summary collapse
Instance Method Summary collapse
- #deterministicGenerateK(data, privkey, group = ECDSA::Group::Secp256k1) ⇒ Object
-
#initialize(privkey = nil) ⇒ Key
constructor
A new instance of Key.
- #isPositive(i) ⇒ Object
- #private_key ⇒ Object
- #public_key ⇒ Object
- #sign(data) ⇒ Object
Constructor Details
#initialize(privkey = nil) ⇒ Key
Returns a new instance of Key.
140 141 142 143 144 145 146 147 |
# File 'lib/block_io.rb', line 140 def initialize(privkey = nil) # the privkey must be in hex if at all provided @group = ECDSA::Group::Secp256k1 @private_key = privkey.to_i(16) || 1 + SecureRandom.random_number(group.order - 1) @public_key = @group.generator.multiply_by_scalar(@private_key) end |
Class Method Details
.from_passphrase(passphrase) ⇒ Object
179 180 181 182 183 184 185 186 187 188 189 |
# File 'lib/block_io.rb', line 179 def self.from_passphrase(passphrase) # create a private+public key pair from a given passphrase # think of this as your brain wallet. be very sure to use a sufficiently long passphrase # if you don't want a passphrase, just use Key.new and it will generate a random key for you raise Exception.new('Must provide passphrase at least 8 characters long.') if passphrase.nil? or passphrase.length < 8 hashed_key = Helper.sha256([passphrase].pack("H*")) # must pass bytes to sha256 return Key.new(hashed_key) end |
Instance Method Details
#deterministicGenerateK(data, privkey, group = ECDSA::Group::Secp256k1) ⇒ Object
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# File 'lib/block_io.rb', line 197 def deterministicGenerateK(data, privkey, group = ECDSA::Group::Secp256k1) # returns a deterministic K -- RFC6979 hash = data.bytes.to_a x = [privkey.to_s(16)].pack("H*").bytes.to_a k = [] 32.times { k.insert(0, 0) } v = [] 32.times { v.insert(0, 1) } # step D k = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), [].concat(v).concat([0]).concat(x).concat(hash).pack("C*")).bytes.to_a # step E v = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), v.pack("C*")).bytes.to_a # puts "E: " + v.pack("C*").unpack("H*")[0] # step F k = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), [].concat(v).concat([1]).concat(x).concat(hash).pack("C*")).bytes.to_a # step G v = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), v.pack("C*")).bytes.to_a # step H2b (Step H1/H2a ignored) v = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), v.pack("C*")).bytes.to_a h2b = v.pack("C*").unpack("H*")[0] tNum = h2b.to_i(16) # step H3 while (!isPositive(tNum) or tNum >= group.order) do # k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0])]), k) k = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), [].concat(v).concat([0]).pack("C*")).bytes.to_a # v = crypto.HmacSHA256(v, k) v = OpenSSL::HMAC.digest(OpenSSL::Digest.new('sha256'), k.pack("C*"), v.pack("C*")).bytes.to_a # T = BigInteger.fromBuffer(v) tNum = v.pack("C*").unpack("H*")[0].to_i(16) end return tNum end |
#isPositive(i) ⇒ Object
191 192 193 194 195 |
# File 'lib/block_io.rb', line 191 def isPositive(i) sig = "!+-"[i <=> 0] return sig.eql?("+") end |
#private_key ⇒ Object
149 150 151 152 |
# File 'lib/block_io.rb', line 149 def private_key # returns private key in hex form return @private_key.to_s(16) end |
#public_key ⇒ Object
154 155 156 157 158 |
# File 'lib/block_io.rb', line 154 def public_key # returns the compressed form of the public key to save network fees (shorter scripts) return ECDSA::Format::PointOctetString.encode(@public_key, compression: true).unpack("H*")[0] end |
#sign(data) ⇒ Object
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# File 'lib/block_io.rb', line 160 def sign(data) # signed the given hexadecimal string nonce = deterministicGenerateK([data].pack("H*"), @private_key) # RFC6979 signature = ECDSA.sign(@group, @private_key, data.to_i(16), nonce) # BIP0062 -- use lower S values only r, s = signature.components over_two = @group.order >> 1 # half of what it was s = @group.order - s if (s > over_two) signature = ECDSA::Signature.new(r, s) # DER encode this, and return it in hex form return ECDSA::Format::SignatureDerString.encode(signature).unpack("H*")[0] end |