Module: Bitcoin::Util
- Included in:
- Bitcoin
- Defined in:
- lib/bitcoin.rb
Instance Method Summary collapse
-
#address_type(address) ⇒ Object
get type of given
address. - #address_version ⇒ Object
-
#base58_checksum?(base58) ⇒ Boolean
(also: #address_checksum?)
verify base58 checksum for given
base58data. - #base58_to_int(base58_val) ⇒ Object
- #bitcoin_byte_hash(bytes) ⇒ Object
- #bitcoin_elliptic_curve ⇒ Object
- #bitcoin_hash(hex) ⇒ Object
- #bitcoin_mrkl(a, b) ⇒ Object
- #bitcoin_signed_message_hash(message) ⇒ Object
-
#block_average_hashing_time(target_nbits, hashes_per_second) ⇒ Object
average time to find a block in seconds with the current target.
-
#block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc = 1.0) ⇒ Object
average mining time (in days) using Mh/s to get btc.
- #block_creation_reward(block_height) ⇒ Object
-
#block_difficulty(target_nbits) ⇒ Object
current difficulty as a multiple of the minimum difficulty (highest target).
- #block_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
-
#block_hashes_to_win(target_nbits) ⇒ Object
average number of hashes required to win a block with the current target.
-
#block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) ⇒ Object
Calculate new difficulty target.
-
#block_next_retarget(block_height) ⇒ Object
block count when the next retarget will take place.
-
#block_probability(target_nbits) ⇒ Object
probability of a single hash solving a block with the current difficulty.
- #block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
-
#blockchain_total_btc(height) ⇒ Object
shows the total number of Bitcoins in circulation, reward era and reward in that era.
-
#checksum(hex) ⇒ Object
checksum is a 4 bytes sha256-sha256 hexdigest.
- #decode_base58(base58_val) ⇒ Object (also: #base58_to_hex)
-
#decode_compact_bits(bits) ⇒ Object
target compact bits (int) to bignum hex.
- #decode_segwit_address(address) ⇒ Object
- #decode_target(target_bits) ⇒ Object
- #encode_address(hex, version) ⇒ Object
- #encode_base58(hex) ⇒ Object
-
#encode_compact_bits(target) ⇒ Object
target bignum hex to compact bits (int).
- #encode_segwit_address(version, program_hex) ⇒ Object
- #generate_address ⇒ Object
- #generate_key ⇒ Object
-
#hash160(hex) ⇒ Object
hash160 is a 20 bytes (160bits) rmd610-sha256 hexdigest.
-
#hash160_from_address(address) ⇒ Object
get hash160 for given
address. - #hash160_to_address(hex) ⇒ Object
- #hash160_to_p2sh_address(hex) ⇒ Object
-
#hash_mrkl_branch(tx, target) ⇒ Object
get merkle branch connecting given
targetto the merkle root oftxlist. -
#hash_mrkl_tree(tx) ⇒ Object
get merkle tree for given
txlist. - #inspect_key(key) ⇒ Object
- #int_to_base58(int_val, leading_zero_bytes = 0) ⇒ Object
- #litecoin_hash(hex) ⇒ Object
-
#mrkl_branch_root(branch, target, idx) ⇒ Object
get merkle root from
branchandtarget. - #open_key(private_key, public_key = nil) ⇒ Object
- #p2sh_version ⇒ Object
- #pubkey_to_address(pubkey) ⇒ Object
- #pubkeys_to_p2sh_multisig_address(m, *pubkeys) ⇒ Object
- #regenerate_public_key(private_key) ⇒ Object
- #sha256(hex) ⇒ Object
- #sign_data(key, data) ⇒ Object
- #sign_message(private_key_hex, public_key_hex, message) ⇒ Object
-
#valid_address?(address) ⇒ Boolean
check if given
addressis valid. -
#valid_pubkey?(pubkey) ⇒ Boolean
check if given
pubkeyis valid. - #verify_message(address, signature, message) ⇒ Object
- #verify_signature(hash, signature, public_key) ⇒ Object
Instance Method Details
#address_type(address) ⇒ Object
get type of given address.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# File 'lib/bitcoin.rb', line 85 def address_type(address) segwit_decoded = decode_segwit_address(address) rescue nil if segwit_decoded witness_version, witness_program_hex = segwit_decoded witness_program = [witness_program_hex].pack("H*") if witness_version == 0 && witness_program.bytesize == 20 return :witness_v0_keyhash end if witness_version == 0 && witness_program.bytesize == 32 return :witness_v0_scripthash end end hex = decode_base58(address) rescue nil if hex && hex.bytesize == 50 && address_checksum?(address) # Litecoin updates the P2SH version byte, and this method should recognize both. p2sh_versions = [p2sh_version] if Bitcoin.network[:legacy_p2sh_versions] p2sh_versions += Bitcoin.network[:legacy_p2sh_versions] end case hex[0...2] when address_version return :hash160 when *p2sh_versions return :p2sh end end nil end |
#address_version ⇒ Object
36 |
# File 'lib/bitcoin.rb', line 36 def address_version; Bitcoin.network[:address_version]; end |
#base58_checksum?(base58) ⇒ Boolean Also known as: address_checksum?
verify base58 checksum for given base58 data.
52 53 54 55 56 |
# File 'lib/bitcoin.rb', line 52 def base58_checksum?(base58) hex = decode_base58(base58) rescue nil return false unless hex checksum( hex[0...42] ) == hex[-8..-1] end |
#base58_to_int(base58_val) ⇒ Object
198 199 200 201 202 203 204 205 206 |
# File 'lib/bitcoin.rb', line 198 def base58_to_int(base58_val) alpha = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" int_val, base = 0, alpha.size base58_val.reverse.each_char.with_index do |char,index| raise ArgumentError, 'Value not a valid Base58 String.' unless char_index = alpha.index(char) int_val += char_index*(base**index) end int_val end |
#bitcoin_byte_hash(bytes) ⇒ Object
289 290 291 |
# File 'lib/bitcoin.rb', line 289 def bitcoin_byte_hash(bytes) Digest::SHA256.digest(Digest::SHA256.digest(bytes)) end |
#bitcoin_elliptic_curve ⇒ Object
265 266 267 |
# File 'lib/bitcoin.rb', line 265 def bitcoin_elliptic_curve ::OpenSSL::PKey::EC.new("secp256k1") end |
#bitcoin_hash(hex) ⇒ Object
283 284 285 286 287 |
# File 'lib/bitcoin.rb', line 283 def bitcoin_hash(hex) Digest::SHA256.digest( Digest::SHA256.digest( [hex].pack("H*").reverse ) ).reverse.bth end |
#bitcoin_mrkl(a, b) ⇒ Object
293 |
# File 'lib/bitcoin.rb', line 293 def bitcoin_mrkl(a, b); bitcoin_hash(b + a); end |
#bitcoin_signed_message_hash(message) ⇒ Object
398 399 400 401 402 403 404 405 406 |
# File 'lib/bitcoin.rb', line 398 def () = .dup.force_encoding('binary') magic = Bitcoin.network[:message_magic] buf = Protocol.pack_var_int(magic.bytesize) + magic buf << Protocol.pack_var_int(.bytesize) + Digest::SHA256.digest(Digest::SHA256.digest(buf)) end |
#block_average_hashing_time(target_nbits, hashes_per_second) ⇒ Object
average time to find a block in seconds with the current target. (nbits)
483 484 485 |
# File 'lib/bitcoin.rb', line 483 def block_average_hashing_time(target_nbits, hashes_per_second) block_hashes_to_win(target_nbits) / hashes_per_second end |
#block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc = 1.0) ⇒ Object
average mining time (in days) using Mh/s to get btc
488 489 490 491 492 |
# File 'lib/bitcoin.rb', line 488 def block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc=1.0) seconds = block_average_hashing_time(block_nbits, mega_hashes_per_second * 1_000_000) reward = block_creation_reward(block_height) / COIN # satoshis to btc (days = seconds / 60 / 60 / 24) * (target_btc / reward) end |
#block_creation_reward(block_height) ⇒ Object
507 508 509 |
# File 'lib/bitcoin.rb', line 507 def block_creation_reward(block_height) Bitcoin.network[:reward_base] / (2 ** (block_height / Bitcoin.network[:reward_halving].to_f).floor) end |
#block_difficulty(target_nbits) ⇒ Object
current difficulty as a multiple of the minimum difficulty (highest target).
430 431 432 433 434 435 436 |
# File 'lib/bitcoin.rb', line 430 def block_difficulty(target_nbits) # max_target = 0x00000000ffff0000000000000000000000000000000000000000000000000000 # current_target = Bitcoin.decode_compact_bits(target_nbits).to_i(16) # "%.7f" % (max_target / current_target.to_f) bits, max_body, scaland = target_nbits, Math.log(0x00ffff), Math.log(256) "%.7f" % Math.exp(max_body - Math.log(bits&0x00ffffff) + scaland * (0x1d - ((bits&0xff000000)>>24))) end |
#block_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
295 296 297 298 299 |
# File 'lib/bitcoin.rb', line 295 def block_hash(prev_block, mrkl_root, time, bits, nonce, ver) h = "%08x%08x%08x%064s%064s%08x" % [nonce, bits, time, mrkl_root, prev_block, ver] bitcoin_hash(h) end |
#block_hashes_to_win(target_nbits) ⇒ Object
average number of hashes required to win a block with the current target. (nbits)
471 472 473 474 |
# File 'lib/bitcoin.rb', line 471 def block_hashes_to_win(target_nbits) current_target = decode_compact_bits(target_nbits).to_i(16) 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff / current_target end |
#block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) ⇒ Object
Calculate new difficulty target. Note this takes in details of the preceeding block, not the current one.
prev_height is the height of the block before the retarget occurs prev_block_time “time” field from the block before the retarget occurs prev_block_bits “bits” field from the block before the retarget occurs (target as a compact value) last_retarget_time is the “time” field from the block when a retarget last occurred
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# File 'lib/bitcoin.rb', line 445 def block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) # target interval - what is the ideal interval between the blocks retarget_time = Bitcoin.network[:retarget_time] actual_time = prev_block_time - last_retarget_time min = retarget_time / 4 max = retarget_time * 4 actual_time = min if actual_time < min actual_time = max if actual_time > max # It could be a bit confusing: we are adjusting difficulty of the previous block, while logically # we should use difficulty of the previous retarget block prev_target = decode_compact_bits(prev_block_bits).to_i(16) new_target = prev_target * actual_time / retarget_time if new_target < Bitcoin.decode_compact_bits(Bitcoin.network[:proof_of_work_limit]).to_i(16) encode_compact_bits(new_target.to_s(16)) else Bitcoin.network[:proof_of_work_limit] end end |
#block_next_retarget(block_height) ⇒ Object
block count when the next retarget will take place.
425 426 427 |
# File 'lib/bitcoin.rb', line 425 def block_next_retarget(block_height) (block_height + (RETARGET_INTERVAL-block_height.divmod(RETARGET_INTERVAL).last)) - 1 end |
#block_probability(target_nbits) ⇒ Object
probability of a single hash solving a block with the current difficulty.
477 478 479 480 |
# File 'lib/bitcoin.rb', line 477 def block_probability(target_nbits) current_target = decode_compact_bits(target_nbits).to_i(16) "%.55f" % (current_target.to_f / 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) end |
#block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
312 313 314 315 316 |
# File 'lib/bitcoin.rb', line 312 def block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) h = "%08x%08x%08x%064s%064s%08x" % [nonce, bits, time, mrkl_root, prev_block, ver] litecoin_hash(h) end |
#blockchain_total_btc(height) ⇒ Object
shows the total number of Bitcoins in circulation, reward era and reward in that era.
495 496 497 498 499 500 501 502 503 504 505 |
# File 'lib/bitcoin.rb', line 495 def blockchain_total_btc(height) reward, interval = Bitcoin.network[:reward_base], Bitcoin.network[:reward_halving] total_btc = reward reward_era, remainder = (height).divmod(interval) reward_era.times{ total_btc += interval * reward reward = reward / 2 } total_btc += remainder * reward [total_btc, reward_era+1, reward, height] end |
#checksum(hex) ⇒ Object
checksum is a 4 bytes sha256-sha256 hexdigest.
46 47 48 49 |
# File 'lib/bitcoin.rb', line 46 def checksum(hex) b = [hex].pack("H*") # unpack hex Digest::SHA256.hexdigest( Digest::SHA256.digest(b) )[0...8] end |
#decode_base58(base58_val) ⇒ Object Also known as: base58_to_hex
213 214 215 216 217 218 219 |
# File 'lib/bitcoin.rb', line 213 def decode_base58(base58_val) s = base58_to_int(base58_val).to_s(16); s = (s.bytesize.odd? ? '0'+s : s) s = '' if s == '00' leading_zero_bytes = (base58_val.match(/^([1]+)/) ? $1 : '').size s = ("00"*leading_zero_bytes) + s if leading_zero_bytes > 0 s end |
#decode_compact_bits(bits) ⇒ Object
target compact bits (int) to bignum hex
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# File 'lib/bitcoin.rb', line 223 def decode_compact_bits(bits) if Bitcoin.network_project == :dogecoin bytes = Array.new(size=((bits >> 24) & 255), 0) bytes[0] = (bits >> 16) & 0x7f if size >= 1 bytes[1] = (bits >> 8) & 255 if size >= 2 bytes[2] = (bits ) & 255 if size >= 3 target = bytes.pack("C*").unpack("H*")[0].rjust(64, '0') # Bit number 24 represents the sign if (bits & 0x00800000) != 0 "-" + target else target end else bytes = Array.new(size=((bits >> 24) & 255), 0) bytes[0] = (bits >> 16) & 255 if size >= 1 bytes[1] = (bits >> 8) & 255 if size >= 2 bytes[2] = (bits ) & 255 if size >= 3 bytes.pack("C*").unpack("H*")[0].rjust(64, '0') end end |
#decode_segwit_address(address) ⇒ Object
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# File 'lib/bitcoin.rb', line 164 def decode_segwit_address(address) hrp = Bitcoin.network[:bech32_hrp] return nil if hrp.nil? actual_hrp, data = Bitcoin::Bech32.decode(address) return nil if actual_hrp.nil? length = data.size return nil if length == 0 || length > 65 return nil if hrp != actual_hrp return nil if data[0] > 16 program = Bitcoin::Bech32.convert_bits(data[1..-1], from_bits: 5, to_bits: 8, pad: false) return nil if program.nil? length = program.size return nil if length < 2 || length > 40 return nil if data[0] == 0 && length != 20 && length != 32 program_hex = program.pack("C*").unpack("H*").first return [data[0], program_hex] end |
#decode_target(target_bits) ⇒ Object
256 257 258 259 260 261 262 263 |
# File 'lib/bitcoin.rb', line 256 def decode_target(target_bits) case target_bits when Fixnum [ decode_compact_bits(target_bits).to_i(16), target_bits ] when String [ target_bits.to_i(16), encode_compact_bits(target_bits) ] end end |
#encode_address(hex, version) ⇒ Object
131 132 133 134 |
# File 'lib/bitcoin.rb', line 131 def encode_address(hex, version) hex = version + hex encode_base58(hex + checksum(hex)) end |
#encode_base58(hex) ⇒ Object
208 209 210 211 |
# File 'lib/bitcoin.rb', line 208 def encode_base58(hex) leading_zero_bytes = (hex.match(/^([0]+)/) ? $1 : '').size / 2 ("1"*leading_zero_bytes) + int_to_base58( hex.to_i(16) ) end |
#encode_compact_bits(target) ⇒ Object
target bignum hex to compact bits (int)
246 247 248 249 250 251 252 253 254 |
# File 'lib/bitcoin.rb', line 246 def encode_compact_bits(target) bytes = OpenSSL::BN.new(target, 16).to_mpi size = bytes.size - 4 nbits = size << 24 nbits |= (bytes[4] << 16) if size >= 1 nbits |= (bytes[5] << 8) if size >= 2 nbits |= (bytes[6] ) if size >= 3 nbits end |
#encode_segwit_address(version, program_hex) ⇒ Object
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# File 'lib/bitcoin.rb', line 146 def encode_segwit_address(version, program_hex) hrp = Bitcoin.network[:bech32_hrp] raise "Invalid network" if hrp.nil? program = [program_hex].pack("H*") return nil if version > 16 length = program.size return nil if version == 0 && length != 20 && length != 32 return nil if length < 2 || length > 40 data = [ version ] + Bitcoin::Bech32.convert_bits(program.unpack("C*"), from_bits: 8, to_bits: 5, pad: true) address = Bitcoin::Bech32.encode(hrp, data) return address.nil? ? nil : address end |
#generate_address ⇒ Object
278 279 280 281 |
# File 'lib/bitcoin.rb', line 278 def generate_address prvkey, pubkey = generate_key [ pubkey_to_address(pubkey), prvkey, pubkey, hash160(pubkey) ] end |
#generate_key ⇒ Object
269 270 271 272 |
# File 'lib/bitcoin.rb', line 269 def generate_key key = bitcoin_elliptic_curve.generate_key inspect_key( key ) end |
#hash160(hex) ⇒ Object
hash160 is a 20 bytes (160bits) rmd610-sha256 hexdigest.
40 41 42 43 |
# File 'lib/bitcoin.rb', line 40 def hash160(hex) bytes = [hex].pack("H*") Digest::RMD160.hexdigest Digest::SHA256.digest(bytes) end |
#hash160_from_address(address) ⇒ Object
get hash160 for given address. returns nil if address is invalid.
74 75 76 77 78 79 80 81 82 |
# File 'lib/bitcoin.rb', line 74 def hash160_from_address(address) case address_type(address) when :witness_v0_keyhash _, witness_program_hex = decode_segwit_address(address) witness_program_hex when :hash160, :p2sh decode_base58(address)[2...42] end end |
#hash160_to_address(hex) ⇒ Object
123 124 125 |
# File 'lib/bitcoin.rb', line 123 def hash160_to_address(hex) encode_address hex, address_version end |
#hash160_to_p2sh_address(hex) ⇒ Object
127 128 129 |
# File 'lib/bitcoin.rb', line 127 def hash160_to_p2sh_address(hex) encode_address hex, p2sh_version end |
#hash_mrkl_branch(tx, target) ⇒ Object
get merkle branch connecting given target to the merkle root of tx list
329 330 331 332 333 334 335 336 337 338 339 340 341 |
# File 'lib/bitcoin.rb', line 329 def hash_mrkl_branch(tx, target) return [ nil ] if tx != tx.uniq branch, chunks = [], [ tx.dup ] while chunks.last.size >= 2 chunks << chunks.last.each_slice(2).map {|a, b| hash = bitcoin_mrkl( a, b || a ) next hash unless [a, b].include?(target) branch << (a == target ? (b || a) : a) target = hash } end branch end |
#hash_mrkl_tree(tx) ⇒ Object
get merkle tree for given tx list.
319 320 321 322 323 324 325 326 |
# File 'lib/bitcoin.rb', line 319 def hash_mrkl_tree(tx) return [nil] if tx != tx.uniq chunks = [ tx.dup ] while chunks.last.size >= 2 chunks << chunks.last.each_slice(2).map {|a, b| bitcoin_mrkl( a, b || a ) } end chunks.flatten end |
#inspect_key(key) ⇒ Object
274 275 276 |
# File 'lib/bitcoin.rb', line 274 def inspect_key(key) [ key.private_key_hex, key.public_key_hex ] end |
#int_to_base58(int_val, leading_zero_bytes = 0) ⇒ Object
188 189 190 191 192 193 194 195 196 |
# File 'lib/bitcoin.rb', line 188 def int_to_base58(int_val, leading_zero_bytes=0) alpha = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" base58_val, base = '', alpha.size while int_val > 0 int_val, remainder = int_val.divmod(base) base58_val = alpha[remainder] + base58_val end base58_val end |
#litecoin_hash(hex) ⇒ Object
301 302 303 304 305 306 307 308 309 310 |
# File 'lib/bitcoin.rb', line 301 def litecoin_hash(hex) bytes = [hex].pack("H*").reverse begin require "scrypt" unless defined?(::SCrypt) hash = SCrypt::Engine.__sc_crypt(bytes, bytes, 1024, 1, 1, 32) rescue LoadError hash = Litecoin::Scrypt.scrypt_1024_1_1_256_sp(bytes) end hash.reverse.unpack("H*")[0] end |
#mrkl_branch_root(branch, target, idx) ⇒ Object
get merkle root from branch and target.
344 345 346 347 348 349 350 351 |
# File 'lib/bitcoin.rb', line 344 def mrkl_branch_root(branch, target, idx) branch.each do |hash| a, b = *( idx & 1 == 0 ? [target, hash] : [hash, target] ) idx >>= 1; target = bitcoin_mrkl( a, b ) end target end |
#open_key(private_key, public_key = nil) ⇒ Object
386 387 388 389 390 391 392 |
# File 'lib/bitcoin.rb', line 386 def open_key(private_key, public_key=nil) key = bitcoin_elliptic_curve key.private_key = ::OpenSSL::BN.from_hex(private_key) public_key = regenerate_public_key(private_key) unless public_key key.public_key = ::OpenSSL::PKey::EC::Point.from_hex(key.group, public_key) key end |
#p2sh_version ⇒ Object
37 |
# File 'lib/bitcoin.rb', line 37 def p2sh_version; Bitcoin.network[:p2sh_version]; end |
#pubkey_to_address(pubkey) ⇒ Object
136 137 138 |
# File 'lib/bitcoin.rb', line 136 def pubkey_to_address(pubkey) hash160_to_address( hash160(pubkey) ) end |
#pubkeys_to_p2sh_multisig_address(m, *pubkeys) ⇒ Object
140 141 142 143 |
# File 'lib/bitcoin.rb', line 140 def pubkeys_to_p2sh_multisig_address(m, *pubkeys) redeem_script = Bitcoin::Script.to_p2sh_multisig_script(m, *pubkeys).last return Bitcoin.hash160_to_p2sh_address(Bitcoin.hash160(redeem_script.hth)), redeem_script end |
#regenerate_public_key(private_key) ⇒ Object
394 395 396 |
# File 'lib/bitcoin.rb', line 394 def regenerate_public_key(private_key) OpenSSL_EC.regenerate_key(private_key)[1] end |
#sha256(hex) ⇒ Object
119 120 121 |
# File 'lib/bitcoin.rb', line 119 def sha256(hex) Digest::SHA256.hexdigest([hex].pack("H*")) end |
#sign_data(key, data) ⇒ Object
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# File 'lib/bitcoin.rb', line 353 def sign_data(key, data) sig = nil loop { sig = key.dsa_sign_asn1(data) sig = if Script.is_low_der_signature?(sig) sig else Bitcoin::OpenSSL_EC.signature_to_low_s(sig) end buf = sig + [Script::SIGHASH_TYPE[:all]].pack("C") # is_der_signature expects sig + sighash_type format if Script.is_der_signature?(buf) break else p ["Bitcoin#sign_data: invalid der signature generated, trying again.", data.unpack("H*")[0], sig.unpack("H*")[0]] end } return sig end |
#sign_message(private_key_hex, public_key_hex, message) ⇒ Object
408 409 410 411 412 |
# File 'lib/bitcoin.rb', line 408 def (private_key_hex, public_key_hex, ) hash = () signature = OpenSSL_EC.sign_compact(hash, private_key_hex, public_key_hex) { 'address' => pubkey_to_address(public_key_hex), 'message' => , 'signature' => [ signature ].pack("m0") } end |
#valid_address?(address) ⇒ Boolean
check if given address is valid. this means having a correct version byte, length and checksum.
61 62 63 |
# File 'lib/bitcoin.rb', line 61 def valid_address?(address) address_type(address) != nil end |
#valid_pubkey?(pubkey) ⇒ Boolean
check if given pubkey is valid.
66 67 68 69 70 71 |
# File 'lib/bitcoin.rb', line 66 def valid_pubkey?(pubkey) ::OpenSSL::PKey::EC::Point.from_hex(bitcoin_elliptic_curve.group, pubkey) true rescue OpenSSL::PKey::EC::Point::Error false end |
#verify_message(address, signature, message) ⇒ Object
414 415 416 417 418 419 420 421 422 |
# File 'lib/bitcoin.rb', line 414 def (address, signature, ) signature = signature.unpack("m0")[0] rescue nil # decode base64 return false unless valid_address?(address) return false unless signature return false unless signature.bytesize == 65 hash = () pubkey = OpenSSL_EC.recover_compact(hash, signature) pubkey_to_address(pubkey) == address if pubkey end |
#verify_signature(hash, signature, public_key) ⇒ Object
373 374 375 376 377 378 379 380 381 382 383 384 |
# File 'lib/bitcoin.rb', line 373 def verify_signature(hash, signature, public_key) key = bitcoin_elliptic_curve key.public_key = ::OpenSSL::PKey::EC::Point.from_hex(key.group, public_key) signature = Bitcoin::OpenSSL_EC.repack_der_signature(signature) if signature key.dsa_verify_asn1(hash, signature) else false end rescue OpenSSL::PKey::ECError, OpenSSL::PKey::EC::Point::Error, OpenSSL::BNError false end |