Module: Bitcoin::Util
- Included in:
- Bitcoin
- Defined in:
- lib/bitcoin.rb
Instance Method Summary collapse
-
#address_type(address) ⇒ Object
get type of given
address. - #address_version ⇒ Object
-
#base58_checksum?(base58) ⇒ Boolean
(also: #address_checksum?)
verify base58 checksum for given
base58data. - #base58_to_int(base58_val) ⇒ Object
- #bitcoin_byte_hash(bytes) ⇒ Object
- #bitcoin_elliptic_curve ⇒ Object
- #bitcoin_hash(hex) ⇒ Object
- #bitcoin_mrkl(a, b) ⇒ Object
- #bitcoin_signed_message_hash(message) ⇒ Object
-
#block_average_hashing_time(target_nbits, hashes_per_second) ⇒ Object
average time to find a block in seconds with the current target.
-
#block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc = 1.0) ⇒ Object
average mining time (in days) using Mh/s to get btc.
- #block_creation_reward(block_height) ⇒ Object
-
#block_difficulty(target_nbits) ⇒ Object
current difficulty as a multiple of the minimum difficulty (highest target).
- #block_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
-
#block_hashes_to_win(target_nbits) ⇒ Object
average number of hashes required to win a block with the current target.
-
#block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) ⇒ Object
Calculate new difficulty target.
-
#block_next_retarget(block_height) ⇒ Object
block count when the next retarget will take place.
-
#block_probability(target_nbits) ⇒ Object
probability of a single hash solving a block with the current difficulty.
- #block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
-
#blockchain_total_btc(height) ⇒ Object
shows the total number of Bitcoins in circulation, reward era and reward in that era.
-
#checksum(hex) ⇒ Object
checksum is a 4 bytes sha256-sha256 hexdigest.
- #decode_base58(base58_val) ⇒ Object (also: #base58_to_hex)
-
#decode_compact_bits(bits) ⇒ Object
target compact bits (int) to bignum hex.
- #decode_segwit_address(address) ⇒ Object
- #decode_target(target_bits) ⇒ Object
- #encode_address(hex, version) ⇒ Object
- #encode_base58(hex) ⇒ Object
-
#encode_compact_bits(target) ⇒ Object
target bignum hex to compact bits (int).
- #encode_segwit_address(version, program_hex) ⇒ Object
- #generate_address ⇒ Object
- #generate_key ⇒ Object
-
#hash160(hex) ⇒ Object
hash160 is a 20 bytes (160bits) rmd610-sha256 hexdigest.
-
#hash160_from_address(address) ⇒ Object
get hash160 for given
address. - #hash160_to_address(hex) ⇒ Object
- #hash160_to_p2sh_address(hex) ⇒ Object
-
#hash_mrkl_branch(tx, target) ⇒ Object
get merkle branch connecting given
targetto the merkle root oftxlist. -
#hash_mrkl_tree(tx) ⇒ Object
get merkle tree for given
txlist. - #inspect_key(key) ⇒ Object
- #int_to_base58(int_val, leading_zero_bytes = 0) ⇒ Object
- #litecoin_hash(hex) ⇒ Object
-
#mrkl_branch_root(branch, target, idx) ⇒ Object
get merkle root from
branchandtarget. - #open_key(private_key, public_key = nil) ⇒ Object
- #p2sh_version ⇒ Object
- #pubkey_to_address(pubkey) ⇒ Object
- #pubkeys_to_p2sh_multisig_address(m, *pubkeys) ⇒ Object
- #regenerate_public_key(private_key) ⇒ Object
- #sha256(hex) ⇒ Object
- #sign_data(key, data) ⇒ Object
- #sign_message(private_key_hex, public_key_hex, message) ⇒ Object
-
#valid_address?(address) ⇒ Boolean
check if given
addressis valid. -
#valid_pubkey?(pubkey) ⇒ Boolean
check if given
pubkeyis valid. - #verify_message(address, signature, message) ⇒ Object
- #verify_signature(hash, signature, public_key) ⇒ Object
Instance Method Details
#address_type(address) ⇒ Object
get type of given address.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# File 'lib/bitcoin.rb', line 85 def address_type(address) segwit_decoded = decode_segwit_address(address) if segwit_decoded witness_version, witness_program_hex = segwit_decoded witness_program = [witness_program_hex].pack("H*") if witness_version == 0 && witness_program.bytesize == 20 return :witness_v0_keyhash end if witness_version == 0 && witness_program.bytesize == 32 return :witness_v0_scripthash end end hex = decode_base58(address) rescue nil if hex && hex.bytesize == 50 && address_checksum?(address) case hex[0...2] when address_version return :hash160 when p2sh_version return :p2sh end end nil end |
#address_version ⇒ Object
36 |
# File 'lib/bitcoin.rb', line 36 def address_version; Bitcoin.network[:address_version]; end |
#base58_checksum?(base58) ⇒ Boolean Also known as: address_checksum?
verify base58 checksum for given base58 data.
52 53 54 55 56 |
# File 'lib/bitcoin.rb', line 52 def base58_checksum?(base58) hex = decode_base58(base58) rescue nil return false unless hex checksum( hex[0...42] ) == hex[-8..-1] end |
#base58_to_int(base58_val) ⇒ Object
192 193 194 195 196 197 198 199 200 |
# File 'lib/bitcoin.rb', line 192 def base58_to_int(base58_val) alpha = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" int_val, base = 0, alpha.size base58_val.reverse.each_char.with_index do |char,index| raise ArgumentError, 'Value not a valid Base58 String.' unless char_index = alpha.index(char) int_val += char_index*(base**index) end int_val end |
#bitcoin_byte_hash(bytes) ⇒ Object
283 284 285 |
# File 'lib/bitcoin.rb', line 283 def bitcoin_byte_hash(bytes) Digest::SHA256.digest(Digest::SHA256.digest(bytes)) end |
#bitcoin_elliptic_curve ⇒ Object
259 260 261 |
# File 'lib/bitcoin.rb', line 259 def bitcoin_elliptic_curve ::OpenSSL::PKey::EC.new("secp256k1") end |
#bitcoin_hash(hex) ⇒ Object
277 278 279 280 281 |
# File 'lib/bitcoin.rb', line 277 def bitcoin_hash(hex) Digest::SHA256.digest( Digest::SHA256.digest( [hex].pack("H*").reverse ) ).reverse.bth end |
#bitcoin_mrkl(a, b) ⇒ Object
287 |
# File 'lib/bitcoin.rb', line 287 def bitcoin_mrkl(a, b); bitcoin_hash(b + a); end |
#bitcoin_signed_message_hash(message) ⇒ Object
392 393 394 395 396 397 398 399 400 |
# File 'lib/bitcoin.rb', line 392 def () = .dup.force_encoding('binary') magic = Bitcoin.network[:message_magic] buf = Protocol.pack_var_int(magic.bytesize) + magic buf << Protocol.pack_var_int(.bytesize) + Digest::SHA256.digest(Digest::SHA256.digest(buf)) end |
#block_average_hashing_time(target_nbits, hashes_per_second) ⇒ Object
average time to find a block in seconds with the current target. (nbits)
477 478 479 |
# File 'lib/bitcoin.rb', line 477 def block_average_hashing_time(target_nbits, hashes_per_second) block_hashes_to_win(target_nbits) / hashes_per_second end |
#block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc = 1.0) ⇒ Object
average mining time (in days) using Mh/s to get btc
482 483 484 485 486 |
# File 'lib/bitcoin.rb', line 482 def block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc=1.0) seconds = block_average_hashing_time(block_nbits, mega_hashes_per_second * 1_000_000) reward = block_creation_reward(block_height) / COIN # satoshis to btc (days = seconds / 60 / 60 / 24) * (target_btc / reward) end |
#block_creation_reward(block_height) ⇒ Object
501 502 503 |
# File 'lib/bitcoin.rb', line 501 def block_creation_reward(block_height) Bitcoin.network[:reward_base] / (2 ** (block_height / Bitcoin.network[:reward_halving].to_f).floor) end |
#block_difficulty(target_nbits) ⇒ Object
current difficulty as a multiple of the minimum difficulty (highest target).
424 425 426 427 428 429 430 |
# File 'lib/bitcoin.rb', line 424 def block_difficulty(target_nbits) # max_target = 0x00000000ffff0000000000000000000000000000000000000000000000000000 # current_target = Bitcoin.decode_compact_bits(target_nbits).to_i(16) # "%.7f" % (max_target / current_target.to_f) bits, max_body, scaland = target_nbits, Math.log(0x00ffff), Math.log(256) "%.7f" % Math.exp(max_body - Math.log(bits&0x00ffffff) + scaland * (0x1d - ((bits&0xff000000)>>24))) end |
#block_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
289 290 291 292 293 |
# File 'lib/bitcoin.rb', line 289 def block_hash(prev_block, mrkl_root, time, bits, nonce, ver) h = "%08x%08x%08x%064s%064s%08x" % [nonce, bits, time, mrkl_root, prev_block, ver] bitcoin_hash(h) end |
#block_hashes_to_win(target_nbits) ⇒ Object
average number of hashes required to win a block with the current target. (nbits)
465 466 467 468 |
# File 'lib/bitcoin.rb', line 465 def block_hashes_to_win(target_nbits) current_target = decode_compact_bits(target_nbits).to_i(16) 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff / current_target end |
#block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) ⇒ Object
Calculate new difficulty target. Note this takes in details of the preceeding block, not the current one.
prev_height is the height of the block before the retarget occurs prev_block_time “time” field from the block before the retarget occurs prev_block_bits “bits” field from the block before the retarget occurs (target as a compact value) last_retarget_time is the “time” field from the block when a retarget last occurred
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# File 'lib/bitcoin.rb', line 439 def block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) # target interval - what is the ideal interval between the blocks retarget_time = Bitcoin.network[:retarget_time] actual_time = prev_block_time - last_retarget_time min = retarget_time / 4 max = retarget_time * 4 actual_time = min if actual_time < min actual_time = max if actual_time > max # It could be a bit confusing: we are adjusting difficulty of the previous block, while logically # we should use difficulty of the previous retarget block prev_target = decode_compact_bits(prev_block_bits).to_i(16) new_target = prev_target * actual_time / retarget_time if new_target < Bitcoin.decode_compact_bits(Bitcoin.network[:proof_of_work_limit]).to_i(16) encode_compact_bits(new_target.to_s(16)) else Bitcoin.network[:proof_of_work_limit] end end |
#block_next_retarget(block_height) ⇒ Object
block count when the next retarget will take place.
419 420 421 |
# File 'lib/bitcoin.rb', line 419 def block_next_retarget(block_height) (block_height + (RETARGET_INTERVAL-block_height.divmod(RETARGET_INTERVAL).last)) - 1 end |
#block_probability(target_nbits) ⇒ Object
probability of a single hash solving a block with the current difficulty.
471 472 473 474 |
# File 'lib/bitcoin.rb', line 471 def block_probability(target_nbits) current_target = decode_compact_bits(target_nbits).to_i(16) "%.55f" % (current_target.to_f / 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) end |
#block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
306 307 308 309 310 |
# File 'lib/bitcoin.rb', line 306 def block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) h = "%08x%08x%08x%064s%064s%08x" % [nonce, bits, time, mrkl_root, prev_block, ver] litecoin_hash(h) end |
#blockchain_total_btc(height) ⇒ Object
shows the total number of Bitcoins in circulation, reward era and reward in that era.
489 490 491 492 493 494 495 496 497 498 499 |
# File 'lib/bitcoin.rb', line 489 def blockchain_total_btc(height) reward, interval = Bitcoin.network[:reward_base], Bitcoin.network[:reward_halving] total_btc = reward reward_era, remainder = (height).divmod(interval) reward_era.times{ total_btc += interval * reward reward = reward / 2 } total_btc += remainder * reward [total_btc, reward_era+1, reward, height] end |
#checksum(hex) ⇒ Object
checksum is a 4 bytes sha256-sha256 hexdigest.
46 47 48 49 |
# File 'lib/bitcoin.rb', line 46 def checksum(hex) b = [hex].pack("H*") # unpack hex Digest::SHA256.hexdigest( Digest::SHA256.digest(b) )[0...8] end |
#decode_base58(base58_val) ⇒ Object Also known as: base58_to_hex
207 208 209 210 211 212 213 |
# File 'lib/bitcoin.rb', line 207 def decode_base58(base58_val) s = base58_to_int(base58_val).to_s(16); s = (s.bytesize.odd? ? '0'+s : s) s = '' if s == '00' leading_zero_bytes = (base58_val.match(/^([1]+)/) ? $1 : '').size s = ("00"*leading_zero_bytes) + s if leading_zero_bytes > 0 s end |
#decode_compact_bits(bits) ⇒ Object
target compact bits (int) to bignum hex
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# File 'lib/bitcoin.rb', line 217 def decode_compact_bits(bits) if Bitcoin.network_project == :dogecoin bytes = Array.new(size=((bits >> 24) & 255), 0) bytes[0] = (bits >> 16) & 0x7f if size >= 1 bytes[1] = (bits >> 8) & 255 if size >= 2 bytes[2] = (bits ) & 255 if size >= 3 target = bytes.pack("C*").unpack("H*")[0].rjust(64, '0') # Bit number 24 represents the sign if (bits & 0x00800000) != 0 "-" + target else target end else bytes = Array.new(size=((bits >> 24) & 255), 0) bytes[0] = (bits >> 16) & 255 if size >= 1 bytes[1] = (bits >> 8) & 255 if size >= 2 bytes[2] = (bits ) & 255 if size >= 3 bytes.pack("C*").unpack("H*")[0].rjust(64, '0') end end |
#decode_segwit_address(address) ⇒ Object
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# File 'lib/bitcoin.rb', line 158 def decode_segwit_address(address) hrp = Bitcoin.network[:bech32_hrp] return nil if hrp.nil? actual_hrp, data = Bitcoin::Bech32.decode(address) return nil if actual_hrp.nil? length = data.size return nil if length == 0 || length > 65 return nil if hrp != actual_hrp return nil if data[0] > 16 program = Bitcoin::Bech32.convert_bits(data[1..-1], from_bits: 5, to_bits: 8, pad: false) return nil if program.nil? length = program.size return nil if length < 2 || length > 40 return nil if data[0] == 0 && length != 20 && length != 32 program_hex = program.pack("C*").unpack("H*").first return [data[0], program_hex] end |
#decode_target(target_bits) ⇒ Object
250 251 252 253 254 255 256 257 |
# File 'lib/bitcoin.rb', line 250 def decode_target(target_bits) case target_bits when Fixnum [ decode_compact_bits(target_bits).to_i(16), target_bits ] when String [ target_bits.to_i(16), encode_compact_bits(target_bits) ] end end |
#encode_address(hex, version) ⇒ Object
125 126 127 128 |
# File 'lib/bitcoin.rb', line 125 def encode_address(hex, version) hex = version + hex encode_base58(hex + checksum(hex)) end |
#encode_base58(hex) ⇒ Object
202 203 204 205 |
# File 'lib/bitcoin.rb', line 202 def encode_base58(hex) leading_zero_bytes = (hex.match(/^([0]+)/) ? $1 : '').size / 2 ("1"*leading_zero_bytes) + int_to_base58( hex.to_i(16) ) end |
#encode_compact_bits(target) ⇒ Object
target bignum hex to compact bits (int)
240 241 242 243 244 245 246 247 248 |
# File 'lib/bitcoin.rb', line 240 def encode_compact_bits(target) bytes = OpenSSL::BN.new(target, 16).to_mpi size = bytes.size - 4 nbits = size << 24 nbits |= (bytes[4] << 16) if size >= 1 nbits |= (bytes[5] << 8) if size >= 2 nbits |= (bytes[6] ) if size >= 3 nbits end |
#encode_segwit_address(version, program_hex) ⇒ Object
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# File 'lib/bitcoin.rb', line 140 def encode_segwit_address(version, program_hex) hrp = Bitcoin.network[:bech32_hrp] raise "Invalid network" if hrp.nil? program = [program_hex].pack("H*") return nil if version > 16 length = program.size return nil if version == 0 && length != 20 && length != 32 return nil if length < 2 || length > 40 data = [ version ] + Bitcoin::Bech32.convert_bits(program.unpack("C*"), from_bits: 8, to_bits: 5, pad: true) address = Bitcoin::Bech32.encode(hrp, data) return address.nil? ? nil : address end |
#generate_address ⇒ Object
272 273 274 275 |
# File 'lib/bitcoin.rb', line 272 def generate_address prvkey, pubkey = generate_key [ pubkey_to_address(pubkey), prvkey, pubkey, hash160(pubkey) ] end |
#generate_key ⇒ Object
263 264 265 266 |
# File 'lib/bitcoin.rb', line 263 def generate_key key = bitcoin_elliptic_curve.generate_key inspect_key( key ) end |
#hash160(hex) ⇒ Object
hash160 is a 20 bytes (160bits) rmd610-sha256 hexdigest.
40 41 42 43 |
# File 'lib/bitcoin.rb', line 40 def hash160(hex) bytes = [hex].pack("H*") Digest::RMD160.hexdigest Digest::SHA256.digest(bytes) end |
#hash160_from_address(address) ⇒ Object
get hash160 for given address. returns nil if address is invalid.
74 75 76 77 78 79 80 81 82 |
# File 'lib/bitcoin.rb', line 74 def hash160_from_address(address) case address_type(address) when :witness_v0_keyhash _, witness_program_hex = decode_segwit_address(address) witness_program_hex when :hash160, :p2sh decode_base58(address)[2...42] end end |
#hash160_to_address(hex) ⇒ Object
117 118 119 |
# File 'lib/bitcoin.rb', line 117 def hash160_to_address(hex) encode_address hex, address_version end |
#hash160_to_p2sh_address(hex) ⇒ Object
121 122 123 |
# File 'lib/bitcoin.rb', line 121 def hash160_to_p2sh_address(hex) encode_address hex, p2sh_version end |
#hash_mrkl_branch(tx, target) ⇒ Object
get merkle branch connecting given target to the merkle root of tx list
323 324 325 326 327 328 329 330 331 332 333 334 335 |
# File 'lib/bitcoin.rb', line 323 def hash_mrkl_branch(tx, target) return [ nil ] if tx != tx.uniq branch, chunks = [], [ tx.dup ] while chunks.last.size >= 2 chunks << chunks.last.each_slice(2).map {|a, b| hash = bitcoin_mrkl( a, b || a ) next hash unless [a, b].include?(target) branch << (a == target ? (b || a) : a) target = hash } end branch end |
#hash_mrkl_tree(tx) ⇒ Object
get merkle tree for given tx list.
313 314 315 316 317 318 319 320 |
# File 'lib/bitcoin.rb', line 313 def hash_mrkl_tree(tx) return [nil] if tx != tx.uniq chunks = [ tx.dup ] while chunks.last.size >= 2 chunks << chunks.last.each_slice(2).map {|a, b| bitcoin_mrkl( a, b || a ) } end chunks.flatten end |
#inspect_key(key) ⇒ Object
268 269 270 |
# File 'lib/bitcoin.rb', line 268 def inspect_key(key) [ key.private_key_hex, key.public_key_hex ] end |
#int_to_base58(int_val, leading_zero_bytes = 0) ⇒ Object
182 183 184 185 186 187 188 189 190 |
# File 'lib/bitcoin.rb', line 182 def int_to_base58(int_val, leading_zero_bytes=0) alpha = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" base58_val, base = '', alpha.size while int_val > 0 int_val, remainder = int_val.divmod(base) base58_val = alpha[remainder] + base58_val end base58_val end |
#litecoin_hash(hex) ⇒ Object
295 296 297 298 299 300 301 302 303 304 |
# File 'lib/bitcoin.rb', line 295 def litecoin_hash(hex) bytes = [hex].pack("H*").reverse begin require "scrypt" unless defined?(::SCrypt) hash = SCrypt::Engine.__sc_crypt(bytes, bytes, 1024, 1, 1, 32) rescue LoadError hash = Litecoin::Scrypt.scrypt_1024_1_1_256_sp(bytes) end hash.reverse.unpack("H*")[0] end |
#mrkl_branch_root(branch, target, idx) ⇒ Object
get merkle root from branch and target.
338 339 340 341 342 343 344 345 |
# File 'lib/bitcoin.rb', line 338 def mrkl_branch_root(branch, target, idx) branch.each do |hash| a, b = *( idx & 1 == 0 ? [target, hash] : [hash, target] ) idx >>= 1; target = bitcoin_mrkl( a, b ) end target end |
#open_key(private_key, public_key = nil) ⇒ Object
380 381 382 383 384 385 386 |
# File 'lib/bitcoin.rb', line 380 def open_key(private_key, public_key=nil) key = bitcoin_elliptic_curve key.private_key = ::OpenSSL::BN.from_hex(private_key) public_key = regenerate_public_key(private_key) unless public_key key.public_key = ::OpenSSL::PKey::EC::Point.from_hex(key.group, public_key) key end |
#p2sh_version ⇒ Object
37 |
# File 'lib/bitcoin.rb', line 37 def p2sh_version; Bitcoin.network[:p2sh_version]; end |
#pubkey_to_address(pubkey) ⇒ Object
130 131 132 |
# File 'lib/bitcoin.rb', line 130 def pubkey_to_address(pubkey) hash160_to_address( hash160(pubkey) ) end |
#pubkeys_to_p2sh_multisig_address(m, *pubkeys) ⇒ Object
134 135 136 137 |
# File 'lib/bitcoin.rb', line 134 def pubkeys_to_p2sh_multisig_address(m, *pubkeys) redeem_script = Bitcoin::Script.to_p2sh_multisig_script(m, *pubkeys).last return Bitcoin.hash160_to_p2sh_address(Bitcoin.hash160(redeem_script.hth)), redeem_script end |
#regenerate_public_key(private_key) ⇒ Object
388 389 390 |
# File 'lib/bitcoin.rb', line 388 def regenerate_public_key(private_key) OpenSSL_EC.regenerate_key(private_key)[1] end |
#sha256(hex) ⇒ Object
113 114 115 |
# File 'lib/bitcoin.rb', line 113 def sha256(hex) Digest::SHA256.hexdigest([hex].pack("H*")) end |
#sign_data(key, data) ⇒ Object
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# File 'lib/bitcoin.rb', line 347 def sign_data(key, data) sig = nil loop { sig = key.dsa_sign_asn1(data) sig = if Script.is_low_der_signature?(sig) sig else Bitcoin::OpenSSL_EC.signature_to_low_s(sig) end buf = sig + [Script::SIGHASH_TYPE[:all]].pack("C") # is_der_signature expects sig + sighash_type format if Script.is_der_signature?(buf) break else p ["Bitcoin#sign_data: invalid der signature generated, trying again.", data.unpack("H*")[0], sig.unpack("H*")[0]] end } return sig end |
#sign_message(private_key_hex, public_key_hex, message) ⇒ Object
402 403 404 405 406 |
# File 'lib/bitcoin.rb', line 402 def (private_key_hex, public_key_hex, ) hash = () signature = OpenSSL_EC.sign_compact(hash, private_key_hex, public_key_hex) { 'address' => pubkey_to_address(public_key_hex), 'message' => , 'signature' => [ signature ].pack("m0") } end |
#valid_address?(address) ⇒ Boolean
check if given address is valid. this means having a correct version byte, length and checksum.
61 62 63 |
# File 'lib/bitcoin.rb', line 61 def valid_address?(address) address_type(address) != nil end |
#valid_pubkey?(pubkey) ⇒ Boolean
check if given pubkey is valid.
66 67 68 69 70 71 |
# File 'lib/bitcoin.rb', line 66 def valid_pubkey?(pubkey) ::OpenSSL::PKey::EC::Point.from_hex(bitcoin_elliptic_curve.group, pubkey) true rescue OpenSSL::PKey::EC::Point::Error false end |
#verify_message(address, signature, message) ⇒ Object
408 409 410 411 412 413 414 415 416 |
# File 'lib/bitcoin.rb', line 408 def (address, signature, ) signature = signature.unpack("m0")[0] rescue nil # decode base64 return false unless valid_address?(address) return false unless signature return false unless signature.bytesize == 65 hash = () pubkey = OpenSSL_EC.recover_compact(hash, signature) pubkey_to_address(pubkey) == address if pubkey end |
#verify_signature(hash, signature, public_key) ⇒ Object
367 368 369 370 371 372 373 374 375 376 377 378 |
# File 'lib/bitcoin.rb', line 367 def verify_signature(hash, signature, public_key) key = bitcoin_elliptic_curve key.public_key = ::OpenSSL::PKey::EC::Point.from_hex(key.group, public_key) signature = Bitcoin::OpenSSL_EC.repack_der_signature(signature) if signature key.dsa_verify_asn1(hash, signature) else false end rescue OpenSSL::PKey::ECError, OpenSSL::PKey::EC::Point::Error, OpenSSL::BNError false end |