Class: Biopsy::Generation
- Inherits:
-
Object
- Object
- Biopsy::Generation
- Defined in:
- lib/biopsy/optimisers/spea2.rb,
lib/biopsy/optimisers/genetic_algorithm.rb
Overview
Algorithm
Instance Attribute Summary collapse
-
#archive_array ⇒ Object
Returns the value of attribute archive_array.
-
#best ⇒ Object
readonly
Returns the value of attribute best.
-
#population_array ⇒ Object
Returns the value of attribute population_array.
-
#population_homogenosity ⇒ Object
readonly
Returns the value of attribute population_homogenosity.
Instance Method Summary collapse
- #add_new_individual(individual) ⇒ Object
- #crossover ⇒ Object
- #generateMutation(chromosome) ⇒ Object
- #get_population ⇒ Object
- #homogeneous_test ⇒ Object
-
#initialize(population_size, parameter_ranges) ⇒ Generation
constructor
A new instance of Generation.
-
#last? ⇒ Boolean
is the generation now full?.
- #mating_process(mother, father) ⇒ Object
-
#next_chromosome(chromosome) ⇒ Object
insert the next chromosome into the generation.
- #run_generation ⇒ Object
-
#selection_process ⇒ Object
—-remainder stochastic sampling (stochastic universal sampling method)—- apply obj function on parameter_sets, rank parameter_sets by obj func score scale obj func score to ranking where: highest rank=2, lowest rank=0 for each integer in rank reproduce += 1, for decimal allow random reproduction (based on size of decimal).
- #update_best?(current) ⇒ Boolean
Constructor Details
#initialize(population_size, parameter_ranges) ⇒ Generation
85 86 87 88 89 90 91 |
# File 'lib/biopsy/optimisers/spea2.rb', line 85 def initialize(population_size, archive_size) @archive_generation = ArchiveGeneration.new @population_size = population_size @archive_size = archive_size @population_array = [] @archive_array = [] end |
Instance Attribute Details
#archive_array ⇒ Object
Returns the value of attribute archive_array.
84 85 86 |
# File 'lib/biopsy/optimisers/spea2.rb', line 84 def archive_array @archive_array end |
#best ⇒ Object (readonly)
Returns the value of attribute best.
9 10 11 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 9 def best @best end |
#population_array ⇒ Object
Returns the value of attribute population_array.
84 85 86 |
# File 'lib/biopsy/optimisers/spea2.rb', line 84 def population_array @population_array end |
#population_homogenosity ⇒ Object (readonly)
Returns the value of attribute population_homogenosity.
9 10 11 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 9 def population_homogenosity @population_homogenosity end |
Instance Method Details
#add_new_individual(individual) ⇒ Object
92 93 94 95 96 97 98 99 100 101 |
# File 'lib/biopsy/optimisers/spea2.rb', line 92 def add_new_individual individual @population_array << Individual.new(individual) # run generation if @population_array.length == @population_size self.run_generation true else false end end |
#crossover ⇒ Object
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 89 def crossover def mating_process(mother, father) children = [{:parameters=>{}}, {:parameters=>{}}] mother[:parameters].each do |mother_key, mother_value| if rand <= 0.5 children[0][:parameters][mother_key.to_sym] = mother_value children[1][:parameters][mother_key.to_sym] = father[:parameters][mother_key.to_sym] else children[0][:parameters][mother_key.to_sym] = father[:parameters][mother_key.to_sym] children[1][:parameters][mother_key.to_sym] = mother_value end end return children end # mate the best quarter with the best half best_quarter_num = (@current_generation.length.to_f/4.0).round best_half_num = best_quarter_num best_quarter = @current_generation[-best_quarter_num..-1] best_half = @current_generation[-(best_quarter_num+best_half_num)..-(best_quarter_num+1)] children = [] best_quarter.each do |father| twins = mating_process(best_half.shuffle!.pop, father) children += twins.map{|value| value} end (0..(children.length-1)).each do |num| @current_generation.delete_at(0) end children.each do |child| if @MUTATION_RATE > rand children.delete_at(children.index(child)) children += [generateMutation(child)] end end @current_generation += children return true end |
#generateMutation(chromosome) ⇒ Object
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 128 def generateMutation chromosome if !@mutation_wheel @mutation_wheel = [{}, 0] total_param_ranges = 0 @ranges.each do |key, value| next if value.length <= 1 total_param_ranges += value.length @mutation_wheel[0][key.to_sym] = total_param_ranges end @mutation_wheel[1] = total_param_ranges end mutation_location = rand(1..@mutation_wheel[1]) = Marshal.load(Marshal.dump(@ranges)) @mutation_wheel[0].each do |key, value| next if value < mutation_location [key.to_sym].delete(chromosome[:parameters][key.to_sym]) chromosome[:parameters][key.to_sym] = [key.to_sym].sample(1)[0] break end return chromosome end |
#get_population ⇒ Object
165 166 167 168 169 170 171 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 165 def get_population if self.last? return @current_generation else return false end end |
#homogeneous_test ⇒ Object
150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 150 def homogeneous_test homo_val = 0 (0..(@current_generation.length-1)).each do |i| (i..(@current_generation.length-1)).each do |j| next if i == j @current_generation[i][:parameters].each do |key, val| homo_val += 1 if val == @current_generation[j][:parameters][key.to_sym] end end end n_value = @current_generation.length-1 sum = (n_value/2)*(n_value+1) @population_homogenosity = (homo_val/(sum*@current_generation[0][:parameters].length).to_f) end |
#last? ⇒ Boolean
is the generation now full?
33 34 35 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 33 def last? return @current_generation.length == @population_size end |
#mating_process(mother, father) ⇒ Object
90 91 92 93 94 95 96 97 98 99 100 101 102 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 90 def mating_process(mother, father) children = [{:parameters=>{}}, {:parameters=>{}}] mother[:parameters].each do |mother_key, mother_value| if rand <= 0.5 children[0][:parameters][mother_key.to_sym] = mother_value children[1][:parameters][mother_key.to_sym] = father[:parameters][mother_key.to_sym] else children[0][:parameters][mother_key.to_sym] = father[:parameters][mother_key.to_sym] children[1][:parameters][mother_key.to_sym] = mother_value end end return children end |
#next_chromosome(chromosome) ⇒ Object
insert the next chromosome into the generation
24 25 26 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 24 def next_chromosome (chromosome) @current_generation += [chromosome] end |
#run_generation ⇒ Object
102 103 104 105 106 |
# File 'lib/biopsy/optimisers/spea2.rb', line 102 def run_generation @pop_and_archive = @population_array + @archive_array FitnessAssignment.run(@pop_and_archive) @archive_array = @archive_generation.run(@pop_and_archive, 10) end |
#selection_process ⇒ Object
—-remainder stochastic sampling (stochastic universal sampling method)—- apply obj function on parameter_sets, rank parameter_sets by obj func score scale obj func score to ranking where: highest rank=2, lowest rank=0 for each integer in rank reproduce += 1, for decimal allow random reproduction (based on size of decimal)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 52 def selection_process current_generation_temp = [] #apply obj func on all params, store score in @current_generation[X][:score] @current_generation.each do |chromosome| current_generation_temp << {:parameters => chromosome[:parameters], :score => chromosome[:score]} end # sort @current_generation by objective function score (ASC), replace @current_generation w/ temporary array @current_generation = current_generation_temp.sort {|a, b| a[:score] <=> b[:score]} # the highest rank is 2.0, generate step_size (difference in rank between each element) step_size = 2.0/(@current_generation.length-1) # counter to be used when assigning rank counter = 0 # next_generation temporary array, @current_generation is replaced by next_generation after loop next_generation = [] # switch scores with ranks @current_generation.each do |chromosome| # rank (asc) is the order in which the element appears (counter) times step_size so that the max is 2 rank = counter * step_size next_generation << {:parameters => chromosome[:parameters], :score => rank} if rank >= 1.0 next_generation << {:parameters => chromosome[:parameters], :score => rank} if rank >= 2.0 next_generation << {:parameters => chromosome[:parameters], :score => rank} if rand <= rank.modulo(1) counter += 1 end # if population is too small while next_generation.length < @population_size select_chromosome = next_generation.sample(1)[0] next_generation << select_chromosome end while next_generation.length > @population_size select_chromosome_index = next_generation.index(next_generation.sample(1)[0]) next_generation.delete_at(select_chromosome_index) end # sort @current_generation by objective function score (ASC), replace @current_generation w/ temporary array @current_generation = next_generation.sort {|a, b| a[:score] <=> b[:score]} return end |
#update_best?(current) ⇒ Boolean
28 29 30 |
# File 'lib/biopsy/optimisers/genetic_algorithm.rb', line 28 def update_best? (current) @best = current if current[:score] > @best[:score] end |