Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
ext/bigdecimal/bigdecimal.c,
lib/bigdecimal/util.rb,
ext/bigdecimal/bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal("0")
10_000.times do
  sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

A Note About Precision

For a calculation using a BigDecimal and another value, the precision of the result depends on the type of value:

  • If value is a Float, the precision is Float::DIG + 1.

  • If value is a Rational, the precision is larger than Float::DIG + 1.

  • If value is a BigDecimal, the precision is value‘s precision in the internal representation, which is platform-dependent.

  • If value is other object, the precision is determined by the result of BigDecimal(value).

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.

Example:

BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

bigdecimal/util

When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:

require ‘bigdecimal/util’

42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0

Methods for Working with JSON

  • ::json_create: Returns a new BigDecimal object constructed from the given object.

  • #as_json: Returns a 2-element hash representing self.

  • #to_json: Returns a JSON string representing self.

These methods are provided by the JSON gem. To make these methods available:

require 'json/add/bigdecimal'
  • License

Copyright © 2002 by Shigeo Kobayashi <[email protected]>.

BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

Constant Summary collapse

VERSION =

The version of bigdecimal library

rb_str_new2(BIGDECIMAL_VERSION)
BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x10
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

BigDecimal@Infinity] value.

Positive infinity[rdoc-ref
NAN =

BigDecimal@Not+a+Number]‘ value.

'{Not a Number}[rdoc-ref

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

._load(str) ⇒ Object

Internal method used to provide marshalling support. See the Marshal module.



808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
# File 'ext/bigdecimal/bigdecimal.c', line 808

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    pch = (unsigned char *)StringValueCStr(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self, true, true));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
	pv->MaxPrec = m+1;
    }
    return VpCheckGetValue(pv);
}

.double_figObject

.interpret_loosely(string) ⇒ Object

Returns the BigDecimal converted loosely from string.



3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
# File 'ext/bigdecimal/bigdecimal.c', line 3750

static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
    char const *c_str = StringValueCStr(str);
    Real *vp = VpNewRbClass(0, c_str, klass, false, true);
    if (!vp)
        return Qnil;
    else
        return VpCheckGetValue(vp);
}

.limit(digits) ⇒ Object

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.



3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
# File 'ext/bigdecimal/bigdecimal.c', line 3774

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = SIZET2NUM(VpGetPrecLimit());

    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
	int nf;
	if (NIL_P(nFig)) return nCur;
	nf = NUM2INT(nFig);
	if (nf < 0) {
	    rb_raise(rb_eArgError, "argument must be positive");
	}
	VpSetPrecLimit(nf);
    }
    return nCur;
}

.mode(mode, setting = nil) ⇒ Integer

Returns an integer representing the mode settings for exception handling and rounding.

These modes control exception handling:

  • BigDecimal::EXCEPTION_NaN.

  • BigDecimal::EXCEPTION_INFINITY.

  • BigDecimal::EXCEPTION_UNDERFLOW.

  • BigDecimal::EXCEPTION_OVERFLOW.

  • BigDecimal::EXCEPTION_ZERODIVIDE.

  • BigDecimal::EXCEPTION_ALL.

Values for setting for exception handling:

  • true: sets the given mode to true.

  • false: sets the given mode to false.

  • nil: does not modify the mode settings.

You can use method BigDecimal.save_exception_mode to temporarily change, and then automatically restore, exception modes.

For clarity, some examples below begin by setting all exception modes to false.

This mode controls the way rounding is to be performed:

  • BigDecimal::ROUND_MODE

You can use method BigDecimal.save_rounding_mode to temporarily change, and then automatically restore, the rounding mode.

NaNs

Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.

Settings:

  • false (default): Returns BigDecimal('NaN').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('NaN')                                 # => NaN
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true)  # => 2
BigDecimal('NaN') # Raises FloatDomainError

Infinities

Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:

  • false (default): Returns BigDecimal('Infinity') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)     # => 0
BigDecimal('Infinity')                                # => Infinity
BigDecimal('-Infinity')                               # => -Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1
BigDecimal('Infinity')  # Raises FloatDomainError
BigDecimal('-Infinity') # Raises FloatDomainError

Underflow

Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:

  • false (default): Returns BigDecimal('0') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)      # => 0
def flow_under
  x = BigDecimal('0.1')
  100.times { x *= x }
end
flow_under                                             # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4
flow_under # Raises FloatDomainError

Overflow

Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:

  • false (default): Returns BigDecimal('Infinity') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)     # => 0
def flow_over
  x = BigDecimal('10')
  100.times { x *= x }
end
flow_over                                             # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1
flow_over # Raises FloatDomainError

Zero Division

Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:

  • false (default): Returns BigDecimal('Infinity') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)       # => 0
one = BigDecimal('1')
zero = BigDecimal('0')
one / zero                                              # => Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16
one / zero # Raises FloatDomainError

All Exceptions

Mode BigDecimal::EXCEPTION_ALL controls all of the above:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true)  # => 23

Rounding

Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting values are:

  • ROUND_UP: Round away from zero. Aliased as :up.

  • ROUND_DOWN: Round toward zero. Aliased as :down and :truncate.

  • ROUND_HALF_UP: Round toward the nearest neighbor; if the neighbors are equidistant, round away from zero. Aliased as :half_up and :default.

  • ROUND_HALF_DOWN: Round toward the nearest neighbor; if the neighbors are equidistant, round toward zero. Aliased as :half_down.

  • ROUND_HALF_EVEN (Banker’s rounding): Round toward the nearest neighbor; if the neighbors are equidistant, round toward the even neighbor. Aliased as :half_even and :banker.

  • ROUND_CEILING: Round toward positive infinity. Aliased as :ceiling and :ceil.

  • ROUND_FLOOR: Round toward negative infinity. Aliased as :floor:.

Returns:



1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
# File 'ext/bigdecimal/bigdecimal.c', line 1068

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    rb_scan_args(argc, argv, "11", &which, &val);
    f = (unsigned long)NUM2INT(which);

    if (f & VP_EXCEPTION_ALL) {
	/* Exception mode setting */
	fo = VpGetException();
	if (val == Qnil) return INT2FIX(fo);
	if (val != Qfalse && val!=Qtrue) {
	    rb_raise(rb_eArgError, "second argument must be true or false");
	    return Qnil; /* Not reached */
	}
	if (f & VP_EXCEPTION_INFINITY) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
			(fo & (~VP_EXCEPTION_INFINITY))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_NaN) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
			(fo & (~VP_EXCEPTION_NaN))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_UNDERFLOW) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
			(fo & (~VP_EXCEPTION_UNDERFLOW))));
	}
	fo = VpGetException();
	if(f & VP_EXCEPTION_ZERODIVIDE) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
			(fo & (~VP_EXCEPTION_ZERODIVIDE))));
	}
	fo = VpGetException();
	return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
	/* Rounding mode setting */
	unsigned short sw;
	fo = VpGetRoundMode();
	if (NIL_P(val)) return INT2FIX(fo);
	sw = check_rounding_mode(val);
	fo = VpSetRoundMode(sw);
	return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal(BigDecimal('Infinity'))
  BigDecimal(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:



3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
# File 'ext/bigdecimal/bigdecimal.c', line 3835

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:



3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
# File 'ext/bigdecimal/bigdecimal.c', line 3885

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:



3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
# File 'ext/bigdecimal/bigdecimal.c', line 3860

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b



2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
# File 'ext/bigdecimal/bigdecimal.c', line 2014

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
        return VpCheckGetValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#*(b) ⇒ Object

Multiply by the specified value.

The result precision will be the precision of the sum of each precision.

See BigDecimal#mult.



1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
# File 'ext/bigdecimal/bigdecimal.c', line 1799

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
        b = GetVpValueWithPrec(r, 0, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx * (VpBaseFig() + 1)));
    VpMult(c, a, b);
    return VpCheckGetValue(c);
}

#**(other) ⇒ Object

Returns the BigDecimal value of self raised to power other:

b = BigDecimal('3.14')
b ** 2              # => 0.98596e1
b ** 2.0            # => 0.98596e1
b ** Rational(2, 1) # => 0.98596e1

Related: BigDecimal#power.



3220
3221
3222
3223
3224
# File 'ext/bigdecimal/bigdecimal.c', line 3220

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+(value) ⇒ Object

Returns the BigDecimal sum of self and value:

b = BigDecimal('111111.111') # => 0.111111111e6
b + 2                        # => 0.111113111e6
b + 2.0                      # => 0.111113111e6
b + Rational(2, 1)           # => 0.111113111e6
b + Complex(2, 0)            # => (0.111113111e6+0i)

See the Note About Precision.



1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
# File 'ext/bigdecimal/bigdecimal.c', line 1451

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, 0, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r, 0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
        GUARD_OBJ(c, NewZeroWrapLimited(1, VpBaseFig() + 1));
        VpAddSub(c, a, b, 1);
    }
    else {
        GUARD_OBJ(c, NewZeroWrapLimited(1, mx * (VpBaseFig() + 1)));
        if (!mx) {
            VpSetInf(c, VpGetSign(a));
        }
        else {
            VpAddSub(c, a, b, 1);
        }
    }
    return VpCheckGetValue(c);
}

#+self

Returns self:

+BigDecimal(5)  # => 0.5e1
+BigDecimal(-5) # => -0.5e1

Returns:

  • (self)


1429
1430
1431
1432
1433
# File 'ext/bigdecimal/bigdecimal.c', line 1429

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-(value) ⇒ Object

Returns the BigDecimal difference of self and value:

b = BigDecimal('333333.333') # => 0.333333333e6
b - 2                        # => 0.333331333e6
b - 2.0                      # => 0.333331333e6
b - Rational(2, 1)           # => 0.333331333e6
b - Complex(2, 0)            # => (0.333331333e6+0i)

See the Note About Precision.



1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
# File 'ext/bigdecimal/bigdecimal.c', line 1507

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, 0, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
        GUARD_OBJ(c, NewZeroWrapLimited(1, VpBaseFig() + 1));
        VpAddSub(c, a, b, -1);
    }
    else {
        GUARD_OBJ(c, NewZeroWrapLimited(1, mx *(VpBaseFig() + 1)));
        if (!mx) {
            VpSetInf(c,VpGetSign(a));
        }
        else {
            VpAddSub(c, a, b, -1);
        }
    }
    return VpCheckGetValue(c);
}

#-Object

Returns the BigDecimal negation of self:

b0 = BigDecimal('1.5')
b1 = -b0 # => -0.15e1
b2 = -b1 # => 0.15e1


1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
# File 'ext/bigdecimal/bigdecimal.c', line 1777

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, NewZeroWrapLimited(1, a->Prec *(VpBaseFig() + 1)));
    VpAsgn(c, a, -1);
    return VpCheckGetValue(c);
}

#/Object

For c = self/r: with round operation



1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
# File 'ext/bigdecimal/bigdecimal.c', line 1839

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    if (
        !is_kind_of_BigDecimal(r) &&
        !RB_INTEGER_TYPE_P(r) &&
        !RB_TYPE_P(r, T_FLOAT) &&
        !RB_TYPE_P(r, T_RATIONAL)
    ) {
        return DoSomeOne(self, r, '/');
    }
    return BigDecimal_div2(self, r, INT2FIX(0));
}

#<(other) ⇒ Boolean

Returns true if self is less than other, false otherwise:

b = BigDecimal('1.5') # => 0.15e1
b < 2                 # => true
b < 2.0               # => true
b < Rational(2, 1)    # => true
b < 1.5               # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1697
1698
1699
1700
1701
# File 'ext/bigdecimal/bigdecimal.c', line 1697

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=(other) ⇒ Boolean

Returns true if self is less or equal to than other, false otherwise:

b = BigDecimal('1.5') # => 0.15e1
b <= 2                # => true
b <= 2.0              # => true
b <= Rational(2, 1)   # => true
b <= 1.5              # => true
b < 1                 # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1718
1719
1720
1721
1722
# File 'ext/bigdecimal/bigdecimal.c', line 1718

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.



1661
1662
1663
1664
1665
# File 'ext/bigdecimal/bigdecimal.c', line 1661

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1677
1678
1679
1680
1681
# File 'ext/bigdecimal/bigdecimal.c', line 1677

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1677
1678
1679
1680
1681
# File 'ext/bigdecimal/bigdecimal.c', line 1677

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>(other) ⇒ Boolean

Returns true if self is greater than other, false otherwise:

b = BigDecimal('1.5')
b > 1              # => true
b > 1.0            # => true
b > Rational(1, 1) # => true
b > 2              # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1738
1739
1740
1741
1742
# File 'ext/bigdecimal/bigdecimal.c', line 1738

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=(other) ⇒ Boolean

Returns true if self is greater than or equal to other, false otherwise:

b = BigDecimal('1.5')
b >= 1              # => true
b >= 1.0            # => true
b >= Rational(1, 1) # => true
b >= 1.5            # => true
b > 2               # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1759
1760
1761
1762
1763
# File 'ext/bigdecimal/bigdecimal.c', line 1759

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpString

Returns a string representing the marshalling of self. See module Marshal.

inf = BigDecimal('Infinity') # => Infinity
dumped = inf._dump           # => "9:Infinity"
BigDecimal._load(dumped)     # => Infinity

Returns:



784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# File 'ext/bigdecimal/bigdecimal.c', line 784

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;
    size_t len;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    snprintf(psz, RSTRING_LEN(dump), "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    len = strlen(psz);
    VpToString(vp, psz+len, RSTRING_LEN(dump)-len, 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the BigDecimal absolute value of self:

BigDecimal('5').abs  # => 0.5e1
BigDecimal('-3').abs # => 0.3e1


2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
# File 'ext/bigdecimal/bigdecimal.c', line 2372

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return VpCheckGetValue(c);
}

#add(value, ndigits) ⇒ Object

Returns the BigDecimal sum of self and value with a precision of ndigits decimal digits.

When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.

Examples:

# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('111111.111')
b.add(1, 0)               # => 0.111112111e6
b.add(1, 3)               # => 0.111e6
b.add(1, 6)               # => 0.111112e6
b.add(1, 15)              # => 0.111112111e6
b.add(1.0, 15)            # => 0.111112111e6
b.add(Rational(1, 1), 15) # => 0.111112111e6


2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
# File 'ext/bigdecimal/bigdecimal.c', line 2271

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = check_int_precision(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_add(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
        return VpCheckGetValue(cv);
    }
}

#ceil(n) ⇒ Object

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0



2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
# File 'ext/bigdecimal/bigdecimal.c', line 2632

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    } else {
	iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#cloneObject

:nodoc:



3243
3244
3245
3246
3247
# File 'ext/bigdecimal/bigdecimal.c', line 3243

static VALUE
BigDecimal_clone(VALUE self)
{
    return self;
}

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g.

a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.



1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
# File 'ext/bigdecimal/bigdecimal.c', line 1393

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
	GUARD_OBJ(b, GetVpValueWithPrec(other, 0, 1));
        obj = rb_assoc_new(VpCheckGetValue(b), self);
    }
    else {
	if (RB_TYPE_P(other, T_RATIONAL)) {
	    Real* pv = DATA_PTR(self);
	    GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
	}
	else {
	    GUARD_OBJ(b, GetVpValue(other, 1));
	}
	obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#div(*args) ⇒ Object

call-seq:

div(value)  -> integer
div(value, digits)  -> bigdecimal or integer

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

If digits is 0, the result is the same as for the / operator or #quo.

If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.

See BigDecimal#/. See BigDecimal#quo.

Examples:

a = BigDecimal("4")
b = BigDecimal("3")

a.div(b, 3)  # => 0.133e1

a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1

a.div(b)     # => 1


2236
2237
2238
2239
2240
2241
2242
2243
2244
# File 'ext/bigdecimal/bigdecimal.c', line 2236

static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;

    rb_scan_args(argc, argv, "11", &b, &n);

    return BigDecimal_div2(self, b, n);
}

#divmod(value) ⇒ Object

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.



2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
# File 'ext/bigdecimal/bigdecimal.c', line 2119

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
        return rb_assoc_new(VpCheckGetValue(div), VpCheckGetValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#dupObject

:nodoc:



3243
3244
3245
3246
3247
# File 'ext/bigdecimal/bigdecimal.c', line 3243

static VALUE
BigDecimal_clone(VALUE self)
{
    return self;
}

#eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true

Returns:

  • (Boolean)


1677
1678
1679
1680
1681
# File 'ext/bigdecimal/bigdecimal.c', line 1677

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.



2823
2824
2825
2826
2827
2828
# File 'ext/bigdecimal/bigdecimal.c', line 2823

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return SSIZET2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite).

Returns:

  • (Boolean)


1232
1233
1234
1235
1236
1237
1238
1239
# File 'ext/bigdecimal/bigdecimal.c', line 1232

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number, as a BigDecimal.



2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
# File 'ext/bigdecimal/bigdecimal.c', line 2414

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return VpCheckGetValue(c);
}

#floor(n) ⇒ Object

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0



2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
# File 'ext/bigdecimal/bigdecimal.c', line 2585

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
	iLoc = 0;
    }
    else {
	iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#fracObject

Return the fractional part of the number, as a BigDecimal.



2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
# File 'ext/bigdecimal/bigdecimal.c', line 2554

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpFrac(c, a);
    return VpCheckGetValue(c);
}

#hashInteger

Returns the integer hash value for self.

Two instances of BigDecimal have the same hash value if and only if they have equal:

  • Sign.

  • Fractional part.

  • Exponent.

Returns:



755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
# File 'ext/bigdecimal/bigdecimal.c', line 755

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
        hash ^= rb_memhash(p->frac, sizeof(DECDIG)*p->Prec);
        hash += p->exponent;
    }
    return ST2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

  • (Boolean)


1222
1223
1224
1225
1226
1227
1228
1229
# File 'ext/bigdecimal/bigdecimal.c', line 1222

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#inspectObject

Returns a string representation of self.

BigDecimal("1234.5678").inspect
  #=> "0.12345678e4"


2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
# File 'ext/bigdecimal/bigdecimal.c', line 2835

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE str;
    size_t nc;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");

    str = rb_str_new(0, nc);
    VpToString(vp, RSTRING_PTR(str), RSTRING_LEN(str), 0, 0);
    rb_str_resize(str, strlen(RSTRING_PTR(str)));
    return str;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b



2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
# File 'ext/bigdecimal/bigdecimal.c', line 2014

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
        return VpCheckGetValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#mult(other, ndigits) ⇒ Object

Returns the BigDecimal product of self and value with a precision of ndigits decimal digits.

When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.

Examples:

# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('555555.555')
b.mult(3, 0)              # => 0.1666666665e7
b.mult(3, 3)              # => 0.167e7
b.mult(3, 6)              # => 0.166667e7
b.mult(3, 15)             # => 0.1666666665e7
b.mult(3.0, 0)            # => 0.1666666665e7
b.mult(Rational(3, 1), 0) # => 0.1666666665e7
b.mult(Complex(3, 0), 0)  # => (0.1666666665e7+0.0i)


2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
# File 'ext/bigdecimal/bigdecimal.c', line 2344

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = check_int_precision(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_mult(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
        return VpCheckGetValue(cv);
    }
}

#n_significant_digitsInteger

Returns the number of decimal significant digits in self.

BigDecimal("0").n_significant_digits         # => 0
BigDecimal("1").n_significant_digits         # => 1
BigDecimal("1.1").n_significant_digits       # => 2
BigDecimal("3.1415").n_significant_digits    # => 5
BigDecimal("-1e20").n_significant_digits     # => 1
BigDecimal("1e-20").n_significant_digits     # => 1
BigDecimal("Infinity").n_significant_digits  # => 0
BigDecimal("-Infinity").n_significant_digits # => 0
BigDecimal("NaN").n_significant_digits       # => 0

Returns:



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# File 'ext/bigdecimal/bigdecimal.c', line 715

static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
    ENTER(1);

    Real *p;
    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpIsZero(p) || !VpIsDef(p)) {
        return INT2FIX(0);
    }

    ssize_t n = p->Prec;  /* The length of frac without trailing zeros. */
    for (n = p->Prec; n > 0 && p->frac[n-1] == 0; --n);
    if (n == 0) return INT2FIX(0);

    DECDIG x;
    int nlz = BASE_FIG;
    for (x = p->frac[0]; x > 0; x /= 10) --nlz;

    int ntz = 0;
    for (x = p->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz;

    ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz;
    return SSIZET2NUM(n_significant_digits);
}

#nan?Boolean

Returns True if the value is Not a Number.

Returns:

  • (Boolean)


1211
1212
1213
1214
1215
1216
1217
# File 'ext/bigdecimal/bigdecimal.c', line 1211

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)


1651
1652
1653
1654
1655
1656
# File 'ext/bigdecimal/bigdecimal.c', line 1651

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}

#power(n) ⇒ Object #power(n, prec) ⇒ Object

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **.



2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
# File 'ext/bigdecimal/bigdecimal.c', line 2978

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
        y = NewZeroWrapLimited(1, n);
        VpSetNaN(y);
        RB_GC_GUARD(y->obj);
        return VpCheckGetValue(y);
    }

  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
	break;

      case T_BIGNUM:
	break;

      case T_FLOAT:
	d = RFLOAT_VALUE(vexp);
	if (d == round(d)) {
	    if (FIXABLE(d)) {
		vexp = LONG2FIX((long)d);
	    }
	    else {
		vexp = rb_dbl2big(d);
	    }
	    goto retry;
	}
        if (NIL_P(prec)) {
            n += BIGDECIMAL_DOUBLE_FIGURES;
        }
        exp = GetVpValueWithPrec(vexp, 0, 1);
	break;

      case T_RATIONAL:
	if (is_zero(rb_rational_num(vexp))) {
	    if (is_positive(vexp)) {
		vexp = INT2FIX(0);
		goto retry;
	    }
	}
	else if (is_one(rb_rational_den(vexp))) {
	    vexp = rb_rational_num(vexp);
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, n, 1);
        if (NIL_P(prec)) {
            n += n;
        }
	break;

      case T_DATA:
	if (is_kind_of_BigDecimal(vexp)) {
	    VALUE zero = INT2FIX(0);
	    VALUE rounded = BigDecimal_round(1, &zero, vexp);
	    if (RTEST(BigDecimal_eq(vexp, rounded))) {
		vexp = BigDecimal_to_i(vexp);
		goto retry;
	    }
            if (NIL_P(prec)) {
                GUARD_OBJ(y, GetVpValue(vexp, 1));
                n += y->Prec*VpBaseFig();
            }
	    exp = DATA_PTR(vexp);
	    break;
	}
	/* fall through */
      default:
	rb_raise(rb_eTypeError,
		 "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
		 RB_OBJ_CLASSNAME(vexp));
    }

    if (VpIsZero(x)) {
        if (is_negative(vexp)) {
            y = NewZeroWrapNolimit(1, n);
            if (BIGDECIMAL_NEGATIVE_P(x)) {
                if (is_integer(vexp)) {
                    if (is_even(vexp)) {
                        /* (-0) ** (-even_integer)  -> Infinity */
                        VpSetPosInf(y);
                    }
                    else {
                        /* (-0) ** (-odd_integer)  -> -Infinity */
                        VpSetNegInf(y);
                    }
                }
                else {
                    /* (-0) ** (-non_integer)  -> Infinity */
                    VpSetPosInf(y);
                }
            }
            else {
                /* (+0) ** (-num)  -> Infinity */
                VpSetPosInf(y);
            }
            RB_GC_GUARD(y->obj);
            return VpCheckGetValue(y);
        }
        else if (is_zero(vexp)) {
            return VpCheckGetValue(NewOneWrapLimited(1, n));
        }
        else {
            return VpCheckGetValue(NewZeroWrapLimited(1, n));
        }
    }

    if (is_zero(vexp)) {
        return VpCheckGetValue(NewOneWrapLimited(1, n));
    }
    else if (is_one(vexp)) {
        return self;
    }

    if (VpIsInf(x)) {
        if (is_negative(vexp)) {
            if (BIGDECIMAL_NEGATIVE_P(x)) {
                if (is_integer(vexp)) {
                    if (is_even(vexp)) {
                        /* (-Infinity) ** (-even_integer) -> +0 */
                        return VpCheckGetValue(NewZeroWrapLimited(1, n));
                    }
                    else {
                        /* (-Infinity) ** (-odd_integer) -> -0 */
                        return VpCheckGetValue(NewZeroWrapLimited(-1, n));
                    }
                }
                else {
                    /* (-Infinity) ** (-non_integer) -> -0 */
                    return VpCheckGetValue(NewZeroWrapLimited(-1, n));
                }
            }
            else {
                return VpCheckGetValue(NewZeroWrapLimited(1, n));
            }
        }
        else {
            y = NewZeroWrapLimited(1, n);
            if (BIGDECIMAL_NEGATIVE_P(x)) {
                if (is_integer(vexp)) {
                    if (is_even(vexp)) {
                        VpSetPosInf(y);
                    }
                    else {
                        VpSetNegInf(y);
                    }
                }
                else {
                    /* TODO: support complex */
                    rb_raise(rb_eMathDomainError,
                            "a non-integral exponent for a negative base");
                }
            }
            else {
                VpSetPosInf(y);
            }
            return VpCheckGetValue(y);
        }
    }

    if (exp != NULL) {
        return bigdecimal_power_by_bigdecimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
        VALUE abs_value = BigDecimal_abs(self);
        if (is_one(abs_value)) {
            return VpCheckGetValue(NewOneWrapLimited(1, n));
        }
        else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
            if (is_negative(vexp)) {
                y = NewZeroWrapLimited(1, n);
                VpSetInf(y, (is_even(vexp) ? 1 : -1) * VpGetSign(x));
                return VpCheckGetValue(y);
            }
            else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
                return VpCheckGetValue(NewZeroWrapLimited(-1, n));
            }
            else {
                return VpCheckGetValue(NewZeroWrapLimited(1, n));
            }
        }
        else {
            if (is_positive(vexp)) {
                y = NewZeroWrapLimited(1, n);
                VpSetInf(y, (is_even(vexp) ? 1 : -1) * VpGetSign(x));
                return VpCheckGetValue(y);
            }
            else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
                return VpCheckGetValue(NewZeroWrapLimited(-1, n));
            }
            else {
                return VpCheckGetValue(NewZeroWrapLimited(1, n));
            }
        }
    }

    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
        mp = x->Prec * (VpBaseFig() + 1);
        GUARD_OBJ(y, NewZeroWrapLimited(1, mp * (ma + 1)));
    }
    else {
        GUARD_OBJ(y, NewZeroWrapLimited(1, 1));
    }
    VpPowerByInt(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
        VpMidRound(y, VpGetRoundMode(), n);
    }
    return VpCheckGetValue(y);
}

#precisionInteger

Returns the number of decimal digits in self:

BigDecimal("0").precision         # => 0
BigDecimal("1").precision         # => 1
BigDecimal("1.1").precision       # => 2
BigDecimal("3.1415").precision    # => 5
BigDecimal("-1e20").precision     # => 21
BigDecimal("1e-20").precision     # => 20
BigDecimal("Infinity").precision  # => 0
BigDecimal("-Infinity").precision # => 0
BigDecimal("NaN").precision       # => 0

Returns:



649
650
651
652
653
654
655
# File 'ext/bigdecimal/bigdecimal.c', line 649

static VALUE
BigDecimal_precision(VALUE self)
{
    ssize_t precision;
    BigDecimal_count_precision_and_scale(self, &precision, NULL);
    return SSIZET2NUM(precision);
}

#precision_scaleArray

Returns a 2-length array; the first item is the result of BigDecimal#precision and the second one is of BigDecimal#scale.

See BigDecimal#precision. See BigDecimal#scale.

Returns:

  • (Array)


691
692
693
694
695
696
697
# File 'ext/bigdecimal/bigdecimal.c', line 691

static VALUE
BigDecimal_precision_scale(VALUE self)
{
    ssize_t precision, scale;
    BigDecimal_count_precision_and_scale(self, &precision, &scale);
    return rb_assoc_new(SSIZET2NUM(precision), SSIZET2NUM(scale));
}

#precsArray

Returns an Array of two Integer values that represent platform-dependent internal storage properties.

This method is deprecated and will be removed in the future. Instead, use BigDecimal#n_significant_digits for obtaining the number of significant digits in scientific notation, and BigDecimal#precision for obtaining the number of digits in decimal notation.

Returns:

  • (Array)


498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# File 'ext/bigdecimal/bigdecimal.c', line 498

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    rb_category_warn(RB_WARN_CATEGORY_DEPRECATED,
                     "BigDecimal#precs is deprecated and will be removed in the future; "
                     "use BigDecimal#precision instead.");

    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(SIZET2NUM(p->Prec*VpBaseFig()),
		       SIZET2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quo(value) ⇒ Object #quo(value, digits) ⇒ Object

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to the given number of digits, according to the rounding mode indicated by BigDecimal.mode.

If digits is 0 or omitted, the result is the same as for the / operator.

See BigDecimal#/. See BigDecimal#div.



1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
# File 'ext/bigdecimal/bigdecimal.c', line 1872

static VALUE
BigDecimal_quo(int argc, VALUE *argv, VALUE self)
{
    VALUE value, digits, result;
    SIGNED_VALUE n = -1;

    argc = rb_scan_args(argc, argv, "11", &value, &digits);
    if (argc > 1) {
        n = check_int_precision(digits);
    }

    if (n > 0) {
        result = BigDecimal_div2(self, value, digits);
    }
    else {
        result = BigDecimal_div(self, value);
    }

    return result;
}

#remainderObject

remainder



2087
2088
2089
2090
2091
2092
2093
2094
2095
# File 'ext/bigdecimal/bigdecimal.c', line 2087

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d, *rv = 0;
    f = BigDecimal_divremain(self, r, &d, &rv);
    if (!NIL_P(f)) return f;
    return VpCheckGetValue(rv);
}

#round(n, mode) ⇒ Object

Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified and positive, or as an Integer if it isn’t.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10

BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer” BigDecimal(‘3.14159’).round(0).class.name #=> “Integer”

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.



2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
# File 'ext/bigdecimal/bigdecimal.c', line 2454

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    int    round_to_int = 0;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
	iLoc = 0;
        round_to_int = 1;
	break;
      case 1:
        if (RB_TYPE_P(vLoc, T_HASH)) {
	    sw = check_rounding_mode_option(vLoc);
	}
	else {
	    iLoc = NUM2INT(vLoc);
            if (iLoc < 1) round_to_int = 1;
	}
	break;
      case 2:
	iLoc = NUM2INT(vLoc);
	if (RB_TYPE_P(vRound, T_HASH)) {
	    sw = check_rounding_mode_option(vRound);
	}
	else {
	    sw = check_rounding_mode(vRound);
	}
	break;
      default:
	break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (round_to_int) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#scaleInteger

Returns the number of decimal digits following the decimal digits in self.

BigDecimal("0").scale         # => 0
BigDecimal("1").scale         # => 0
BigDecimal("1.1").scale       # => 1
BigDecimal("3.1415").scale    # => 4
BigDecimal("-1e20").precision # => 0
BigDecimal("1e-20").precision # => 20
BigDecimal("Infinity").scale  # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale       # => 0

Returns:



673
674
675
676
677
678
679
# File 'ext/bigdecimal/bigdecimal.c', line 673

static VALUE
BigDecimal_scale(VALUE self)
{
    ssize_t scale;
    BigDecimal_count_precision_and_scale(self, NULL, &scale);
    return SSIZET2NUM(scale);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0. It behaves the same with zeros - it returns a positive value for a positive zero (BigDecimal(‘0’)) and a negative value for a negative zero (BigDecimal(‘-0’)).

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative



3810
3811
3812
3813
3814
3815
# File 'ext/bigdecimal/bigdecimal.c', line 3810

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)



2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
# File 'ext/bigdecimal/bigdecimal.c', line 2786

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1, RSTRING_LEN(str));
    s = 1;
    if(psz1[0] == '-') {
	size_t len = strlen(psz1 + 1);

	memmove(psz1, psz1 + 1, len);
	psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, SSIZET2NUM(e));
    return obj;
}

#sqrt(n) ⇒ Object

Returns the square root of the value.

Result has at least n significant digits.



2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
# File 'ext/bigdecimal/bigdecimal.c', line 2394

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);

    n = check_int_precision(nFig);
    n += VpDblFig() + VpBaseFig();
    if (mx <= n) mx = n;
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpSqrt(c, a);
    return VpCheckGetValue(c);
}

#sub(value, digits) ⇒ Object

Subtract the specified value.

e.g.

c = a.sub(b,n)
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
# File 'ext/bigdecimal/bigdecimal.c', line 2301

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = check_int_precision(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_sub(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
        return VpCheckGetValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_d                       # => 0.314e1


110
111
112
# File 'lib/bigdecimal/util.rb', line 110

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_digits                  # => "3.14"


90
91
92
93
94
95
96
97
98
# File 'lib/bigdecimal/util.rb', line 90

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.



1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
# File 'ext/bigdecimal/bigdecimal.c', line 1300

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
	return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
	goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
	goto underflow;

    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, RSTRING_LEN(str), 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
	if (d == 0.0) goto underflow;
	if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
	return rb_float_new(VpGetDoubleNegInf());
    else
	return rb_float_new(VpGetDoublePosInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
	return rb_float_new(-0.0);
    else
	return rb_float_new(0.0);
}

#to_iObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
# File 'ext/bigdecimal/bigdecimal.c', line 1253

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (DECDIG_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (BIGDECIMAL_NEGATIVE_P(p)) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_intObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
# File 'ext/bigdecimal/bigdecimal.c', line 1253

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (DECDIG_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (BIGDECIMAL_NEGATIVE_P(p)) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.



1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
# File 'ext/bigdecimal/bigdecimal.c', line 1347

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_AREF(a, 1);
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
	numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
	return rb_Rational(numerator,
			   rb_funcall(INT2FIX(10), rb_intern("**"), 1,
				      INT2FIX(-denomi_power)));
    }
    else {
	return rb_Rational1(rb_funcall(numerator, '*', 1,
				       rb_funcall(INT2FIX(10), rb_intern("**"), 1,
						  INT2FIX(denomi_power))));
    }
}

#to_s(s) ⇒ Object

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many digits, starting from ‘.’ and counting outwards.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

BigDecimal('-1234567890123.45678901234567890').to_s('5F')
  #=> '-123 45678 90123.45678 90123 45678 9'

BigDecimal('1234567890123.45678901234567890').to_s('+8F')
  #=> '+12345 67890123.45678901 23456789'

BigDecimal('1234567890123.45678901234567890').to_s(' F')
  #=> ' 1234567890123.4567890123456789'


2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
# File 'ext/bigdecimal/bigdecimal.c', line 2691

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0: E format, 1: F format */
    int   fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    SIGNED_VALUE m;
    VALUE  f;

    GUARD_OBJ(vp, GetVpValue(self, 1));

    if (rb_scan_args(argc, argv, "01", &f) == 1) {
	if (RB_TYPE_P(f, T_STRING)) {
	    psz = StringValueCStr(f);
	    if (*psz == ' ') {
		fPlus = 1;
		psz++;
	    }
	    else if (*psz == '+') {
		fPlus = 2;
		psz++;
	    }
	    while ((ch = *psz++) != 0) {
		if (ISSPACE(ch)) {
		    continue;
		}
		if (!ISDIGIT(ch)) {
		    if (ch == 'F' || ch == 'f') {
			fmt = 1; /* F format */
		    }
		    break;
		}
		mc = mc*10 + ch - '0';
	    }
	}
	else {
	    m = NUM2INT(f);
	    if (m <= 0) {
		rb_raise(rb_eArgError, "argument must be positive");
	    }
	    mc = (size_t)m;
	}
    }
    if (fmt) {
	nc = VpNumOfChars(vp, "F");
    }
    else {
	nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
	nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_usascii_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
	VpToFString(vp, psz, RSTRING_LEN(str), mc, fPlus);
    }
    else {
	VpToString (vp, psz, RSTRING_LEN(str), mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncate(n) ⇒ Object

Truncate to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0



2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
# File 'ext/bigdecimal/bigdecimal.c', line 2525

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    }
    else {
	iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, NewZeroWrapLimited(1, mx));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)


1643
1644
1645
1646
1647
1648
# File 'ext/bigdecimal/bigdecimal.c', line 1643

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}